定量分析中的误差及有效数字

阅读: 评论:0

定量分析中的误差及有效数字
本章教学目的
1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握提高分析结果准确度的方法。
3、掌握系统误差和偶然误差的概念及减免方法。
4、掌握有效数字的概念及运算规则,并能在实践中灵活运用。
教学重点与难点:准确度和精密度表示方法;误差来源及消除方法;有效数字及运算法则。
教学内容:
一、准确度与精密度
1、准确度与误差
1测定酒精溶液中乙醇含量为
150.20%
250.20%
350.18%
450.17%
平均值:50.19%,真实值:50.36%
什么是误差:分析结果与真实值之间的差值。
误差的表示:绝对误差(E= 测得值(X 真实值(T
                  测得值(X) - zhongguozhiwang真实值(T)
相对误差(RE=                          ×100%
                        真实值(T)
绝对误差:表示测定值与真实值之差。
相对误差:误差在真实值(结果)中所占百分率。
有关真实值:实际工作中人们常将用标准方法通过多次重复测定所求出的算术平均值作为真实值。
准确度:实验值与真实值之间相符合的程度,误差越小,准确度越高;误差越大,准确度越低。
2:测定值57.30,真实值57.34
绝对误差(E= X – T = 57.30 - 57.34 = -0.04
                  E              -0.04
相对误差(RE=     ×100%  =       ×100% = -0.07%
                  T              57.34
3:测定值为80.35,真实值85.39
E = X – T = 80.35 - 85.39 = -0.04
      E            -0.04
RE =     ×100%  =     ×100%  = -0.05%
      T              80.39
得出结论:绝对误差相同,但相对误差不同。
练习:测定值:80.18%,真实值:80.13%
计算:绝对误差(E),相对误差(RE
应用:实际测定时,相对误差使用较多,仪器分析使用绝对误差较多,具体情况具体分析。
2、精密度与偏差
1                   
        50.20    50.40      50.36
        50.20    50.30      50.35
        50.18    50.25      50.34
        50.17    50.23      50.33
平均值:50.19    50.30      50.35
真实值:50.36
什么是偏差:表示几次平行测定结果相互接近的程度。
1)偏差的表示:绝对偏差(d= X—X
                  d          X - X
相对偏差(d%=     ×100% =       × 100%
                  X            X
绝对偏差:单项测定与平均值的差值。
相对偏差:绝对偏差在平均值所占百分率或千分率。
精密度是指相同条件下几次重复测定结果彼此相符合的程度。
精密大小由偏差表示,偏差愈小,精密度愈高。
实际工作中:平均偏差的使用较普遍。
2)平均偏差:是指单项测定值与平均值的偏差(取绝对值)之和,除以测定次数。
                  | d1| + | d2| + | d3| + |dn|      | di |
平均偏差d =                                 =          
                          n                        n
                    d              | di |
相对平均偏差(%= —— × 100%  =           × 100% 
                    X                nX
255.5155.5055.4655.4955.51
计算:Xdd%  (见书P215页)
3)标准偏差S
                                   
相对标准偏差 = S/ X× 100%
总结:在一般分析中,通常多采用平均偏差来表示测量的精密度。而对于一种分析方法所能达到的精密度的考察,一批分析结果的分散程度的判断以及其它许多分析数据的处理等,最好采用相对标准偏差等理论和方法。用标准偏差表示精密度,可将单项测量的较大偏差和测量次数对精密度的影响反映出来。
3:甲:0.30.20.4-0.20.40.00.10.30.2-0.3
乙:0.00.10.70.20.10.20.60.10.30.1
计算:第一组和第二组即甲组和乙组的dS
                | di |
第一组:d1 =         = 0.24
                    n             
                | di |
第二组:d2 =             = 0.24
                    n             
第一组:S1 = 0.28      S2 = 0.34
由此说明:第一组的精密度好。
3、准确度与精密度的关系(总结)
第四维空间
1
2
3
4
平均值
0.20
0.20
0.18
0.17
0.19
汇泉影城
0.40
0.30
0.25
数据可信度
0.23
0.30
0.36
0.35
0.34
0.33
0.35
由甲、乙、丙三人的实验数据分析结果:(标准值为0.31
甲:精密度很高,但平均值与标准样品数值相差很大,说明准确度低。
乙:精密度不高,准确度也不高。
丙:精密度高,准确度也高。
准确度高必须精密度高,精密度高并不等于准确度高。
中华企管网
二、误差来源及消除方法
    产生误差的原因很多,一般分为三类:系统误差、偶然误差和过失误差。
1、系统误差:由某种固定原因所造成的误差,使测定结果系统偏高或偏低。当重复进行测量时,它会重复出现。
①仪器误差:由于使用的仪器本身不够精确受造成的。
例:未经过校正的容量瓶,移液管、砝码等。
②方法误差:由分析方法本身造成的。
例:重量分析中由于沉淀的溶解、共沉淀现象。
滴定分析中,干扰离子的影响,等当点、突跃范围和滴定终点不符合。
③试剂误差:由于所用水和试剂不纯造成的。
④操作误差:由于分析工作者掌握分析操作的条件不熟练,个人观察器官不敏锐和固有的习惯所致。
2、偶然误差:由于在测量过程中,不固定的因素所造成的。有称不可测误差、随机误差。
例如:样品处理时微小的差别,气温、气流等环境因素。
偶然误差在分析操作中是无法避免的。对于同一试样进行多次分析,得到的分析结果仍不完全一致的原因为偶然误差。偶然误差难以出确定原因,似乎没有规律,但如果进行很多次测定,便会发现数据的分布符合统计规律:讲解“误差的正态分布曲线”
①正误差和负误差出现的机会相等。
②小误差出现的次数多,大误差出现的次数少,个别特别大的误差出现的次数极少。
③在一定条件下,有限次测定值中,其误差的绝对值不会超过一定界限。
过失误差:由操作不正确,粗心大意引起的误差,舍去所得结果。
    例如:加错试剂、溶液溅失等。过失误差在工作中是完全可以避免的。
整体形象设计3、提高分析结果准确度的方法
1)选择合适的分析方法
化学分析:滴定分析,重量分析灵敏度不高,高含量较合适
仪器分析:微量分析较合适
2)减小测量误差
例如:在重量分析中,测量步骤是称重,这时就应设法减少称量误差。
例如:天平的称量误差在±0.0002克,如使测量时的相对误差在0.1%以下,试样至少应该称多少克?

本文发布于:2023-08-15 02:38:03,感谢您对本站的认可!

本文链接:https://patent.en369.cn/xueshu/360436.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:误差   分析   结果   精密度   测定   方法   准确度   表示
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图