自动控制原理课程设计实验

阅读: 评论:0

零和竞争上海电力学院
自动控制原理实践报告
课名:自动控制原理应用实践
题目:水翼船渡轮的纵倾角控制
温州号导弹护卫舰
圈禁by靡靡之音船舶航向的自动操舵控制
班级:
阴水
姓名:
学号:
水翼船渡轮的纵倾角控制
一.系统背景简介
水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。
水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。
航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。
当尾舵的角坐标偏转错误!未到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未
到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。
二.实际控制过程
某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。
上图:水翼船渡轮的纵倾角控制系统
已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。
三.控制设计要求
试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。
本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。
四.分析系统时域
1.原系统稳定性分析
num=[50];
den=[1 80 2500 50];
g1=tf(num,den);
[z,p,k]=zpkdata(g1,'v');
扬州1地升高风险10地升中风险p1=pole(g1);
pzmap(g1)
分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。
2.Simulink搭建未加控制器的原系统(不考虑扰动)。
sys=tf(50,[1 80 2500 50]);                                                        t=0:0.1:1000;
step(sys,t)
分析:上图为输入为单位阶跃信号下的响应曲线,如图可以看出,其调整
时间ts=196s,而且超调量为0%。故其实验结果,不符合要求。
对于系统的时域分析,系统是不稳定的,而且当输入单位阶跃信号时响应不满足
题目要求。因此要添加控制器来满足要求。非你莫属20120101
五.控制设计
一.使用PID控制器进行参数整定
在simulink上绘制出加入PID控制器的系统
上图为添加PID控制器后的实验原理图(未接扰动)
2.由理论知识可知:当增加积分参数Ti时,系统的超调量减小;当Td减小,使得调整时间变短。
3. 先只改变比例环节的系数。通过相应调P的参数,不断尝试P的取值使得输出稳定,到最佳参数。
上图为比例环节的系统(已添加扰动)

本文发布于:2023-07-07 12:36:08,感谢您对本站的认可!

本文链接:https://patent.en369.cn/xueshu/182902.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:系统   调整   倾角   控制器   船只   水翼   转动
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图