一种温成型用钢及其制备方法与流程

阅读: 评论:0



1.本发明属于高强度结构件用钢板的制备技术领域,特别的涉及一种温成型用钢及其制备方法,适用于高强度结构件的温成形工艺制造。


背景技术:



2.轻量化是汽车行业的主要发展趋势,通过使用高强度零部件制造白车身可以有效的降低汽车重量,并且提升车辆的结构稳定性和碰撞安全性。当前高强化白车身零部件多采用强度1000mpa以下的冷成型用双相钢(dual-phase,dp)和淬火-配分钢(quenching-partitioning,qp),以及1500mpa级的热成型用马氏体mnb钢。1000mpa以上强度的dp钢、qp钢因强度过高只能进行简单的冷冲压成型,无法制造复杂零件,对压机等设备也有较高的要求,应用受到较大限制。热成型mnb钢工艺成熟,但在生产时需要将原材料加热到奥氏体温度以上(通常高于800℃),板料移送和冲压成型过程中表面氧化严重,同时需通过模具高压力淬火获得高强马氏体组织,但是零件延伸率仅为6%~8%,韧性储备也不足,易发生脆断,碰撞安全性有一定局限。现代车辆安全指标的提升迫使汽车制造商更多的采用高强化零部件,采用dp、qp钢强度不足且成型性较差,而热成型mnb钢的塑性、韧性较差,且因生产设备要求较高致使产品成本偏高。由此可见,当前材料因性能和工艺的局限,已经不能满足汽车零部件的多元化设计需求。
3.针对上述问题,开发新型高强韧钢板材料和配套的生产、成型技术,实现材料的高塑性以满足成型性能、高强度以满足承载能力、高韧性以满足碰撞安全性,是当前汽车工业面临的主要问题。


技术实现要素:



4.本发明的目的在于提供一种温成型用钢及其制备方法,该方法基于薄板坯连铸连轧工艺,具有流程短、效率高、成本低等优点。发明钢板在成型前具有较高的力学性能,满足rm≥1400mpa,a≥8%,采用温成型工艺成型后零件满足rm≥1200mpa,a≥10,且韧性良好。
5.本发明基于温成形工艺开发,特点在于成型温度在奥氏体温度以下的中温区,既获得了材料的高成型性能,同时过程中没有马氏体相变,因此对加热设备、冲压模具、冷却方式等都降低了要求,进而有效的降低生产成本,提高生产效率。温成型的核心问题在于材料在中温区加热成型软化的同时也会造成冷却后室温强度降低。本发明钢板的生产制备方法即是针对温成型工艺,通过材料的成分设计和组织调控,在中温加热后软化以获得良好的成型加工性能,同时依靠析出相强化设计和组织遗传调控获得较高的室温强度和塑韧性匹配,满足汽车用高强度零件的应用要求。
6.发明钢板基于薄板坯连铸连轧(csp)工艺制成,该工艺集铸造、板坯加热、轧制、冷却于一体,最小轧制厚度可达0.8mm,省去了薄板的冷轧工序,具有流程短、效率高、污染小、成本低等突出优势。
7.钢板的轧制温度和压下量对于组织控制有重要影响,因此,本发明钢板在轧制过
程中,通过机架间冷却水的控制,对轧制温度进行精确调控,实现控制轧制,并利用析出的微合金碳化物钉扎晶界,细化奥氏体晶粒,获得组织精细化和钢板的高强韧化。
8.本发明钢板创新性的采用温成形工艺制造零件,钢板在成型前具有1400mpa以上的高强度马氏体组织,成型温度在550~700℃温度区间,低于材料的奥氏体化温度。钢板经过短时间加热后具有较低的强度和良好的塑性,冲压成型性能优良,同时具有良好的抗回火软化能力,既保证了成型性能,又免去了热成型所需的复杂装备,生产成本低,制造效率高,能够满足汽车制造业低成本、轻量化的发展需求。
9.温成形过程中钢板发生回复,造成室温强度下降,因此避免成型过程的强度损失是本发明的关键。根据析出强化理论,每析出0.1vol%的2-5nm碳化物粒子,可以获得142-224mpa的强化增量。本发明钢板利用微合金元素的析出强化,在成型前有较多的v、mo元素固溶于基体中,成型前的预热过程中获得弥散、细小的微合金碳化物析出相,获得析出强化,同时抑制位错的融合消失,进而弥补钢板回复造成的损失,提高钢板的抗回火软化的能力。
10.满足以上要求的钢板,主要包括以下化学成分:c:0.15~0.35wt.%,mn:0.5~3.0wt.%,p:≤0.010wt.%,s:≤0.005wt.%,n:≤0.006wt.%,v:0.05~0.35wt.%,ti:0.03~0.15wt.%,mo:0.1~0.4wt.%,余量为fe和不可避免的杂质。在上述成分基础上可以通过添加以下一种或几种元素,以改善性能,提高强度和塑韧性,并保证钢的淬透性要求:ni:0.1~3.0wt.%,cr:0.2~2.0wt.%,si:0.2~1.0wt.%,al:0.01~0.05wt.%,nb:0.02~0.05wt.%,b:0.0005~0.010wt.%。
11.基于以上钢板的化学成分,优选的方案为:c:0.18~0.25wt.%,mn:1.0~2.0wt.%,p:≤0.010wt.%,s:≤0.005wt.%,n:≤0.004wt.%,v:0.10~0.25wt.%,ti:0.05~0.10wt.%,mo:0.20~0.35wt.%,余量为fe和不可避免的杂质。
12.具有上述成分的温成型用高强钢板,其厚度为1.0~4.0mm。轧制过程中,通过机架间冷却水的控制,可以对轧制温度进行调控,利用再结晶控制轧制和微合金碳化物钉扎晶界,细化奥氏体晶粒至10微米以下,实现钢板的高强韧化
13.基于上述材料成分,各元素的作用如下:
14.c:c元素可在钢板生产过程中产生间隙固溶强化,并形成碳化物析出相强化基体材料,直接决定了钢板的力学性能。考虑到发明钢添加了强碳化物析出元素,会消耗c元素,同时过高的碳化物会造成材料焊接困难,因此c含量控制在0.15~0.35wt.%,同时其含量满足(ti-3.42n-3.00s)/4.00+v/4.24+mo/16.00≤c。
15.mn:mn元素可以起到固溶强化作用,提高基体强度,同时可以稳定奥氏体组织,降低淬火温度,但是过高的mn含量会降低钢的塑韧性和焊接性能。基于本发明钢成分设计,mn含量控制在1.0%~3.0wt.%。
16.p、s、n:p在钢液凝固时会形成偏析,在随后的热处理及加工工序中偏聚到晶界,使钢的脆性大幅提增加,降低其氢致延迟断裂敏感性升高。s元素易形成mns等有害夹杂物并在晶界偏析,降低材料韧性和成型性能。n元素在高温区易与微合金元素ti、nb、v等形成氮化物或碳氮化物析出相,可以钉扎晶界,细化奥氏体晶粒,但是大尺寸的氮化物会成为裂纹源,降低材料的断裂韧性和冲压性能。因此,p含量控制在0.010wt.%以下,s含量不超过0.005wt.%,n含量控制在0.006wt.%以内。
17.v、ti:v和ti都是强碳化物析出元素,也是本发明钢板获得高强化以及抗回火软化的关键元素。v和ti的含量直接决定了碳化物的可析出总量,对析出强化有重要影响。本发明钢板及成型工艺主要利用v、ti、mo的碳化物的析出强化实现抗回火软化,同时还可以细化奥氏体晶粒,提高钢板的塑性和韧性。根据v和ti的固溶度积计算可知,ti的析出温度较高,而v的析出温度较低。因此,本发明在轧制过程中利用高温析出的tic和ti(c,n)细化奥氏体晶粒,而成型过程中依靠vc、(v,mo)c等碳化物析出相钉扎位错,实现抗回火软化。较高的v、ti元素含量会使析出相长大速率提高,降低强化效果。因此,本发明v含量控制在0.05~0.35wt.%,ti含量控制在0.03~0.15wt.%。
18.mo:mo能提高钢的淬透性,可以强化晶界,同时还具有较强的抑制碳化物长大的作用,可以与v、ti等元素形成复合析出相,提高析出强化效果。含量小于0.1wt.%时强化左右不明显,高于0.8wt.%时效果达到饱和,考虑强化效果和成本,含量应控制在0.1~0.4wt.%。
19.nb:nb也是碳化物形成元素,可以细化晶粒,同时固溶态可以提高未再结晶区温度,易于轧制过程中实现奥氏体扁平化。考虑强化效果,nb含量应控制在0.02%~0.05wt.%。
20.ni:ni是奥氏体稳定元素,有效降低钢的ms点,同时可以提高材料的塑性和低温韧性,考虑ni的价格较高,其含量应控制在3.0wt.%以内。
21.cr:cr能提高钢的淬透性,并防止高温情况下钢的表面氧化,其成分应控制在2.0wt.%以内。
22.si:可以抑制碳化物析出,提高c的配分效果。考虑到发明钢主要采用碳化物析出提高强度,si含量应尽量低,控制在0.2~1.0wt.%。
23.al:al能有效的去除钢水中的氧,并细化晶粒,提高韧性。但含量过高易形成氧化铝夹杂,劣化钢的塑韧性。因此含量应控制在0.01~0.05wt.%
24.b:b元素可以大幅度提高材料的淬透性并净化晶界,含量低于0.0005wt.%时作用不明显,高于0.010wt.%时作用增加亦不明显,且过多的b元素会形成大颗粒夹杂物影响基体材料性能,因此b含量控制在0.0005%~0.010wt.%。
25.本发明钢板适用的生产工艺为:
26.(1)钢水采用转炉或电炉冶炼,经真空脱气去除钢水内有害气体元素。
27.(2)薄板坯连铸连轧:连铸坯厚度60-80mm,加热温度1200-1280℃,开轧温度1150-1250℃,采用6-8机架连轧机组轧制,前1-3机架采用高温大压下,压缩量30-60%,再结晶区轧制比例70-90%,终轧温度高于钢板a3温度50℃以上。
28.(3)直接淬火:钢板出轧机后直接淬火,温度降至100℃以下,获得高强度全马氏体组织,随后卷曲获得钢卷或直接剪板。
29.(4)回火:钢板(卷)进行150-200℃低温回火,保温时间2-4小时(钢卷保温72小时以上),消除淬火内应力。
30.本发明钢板的温成型工艺流程为:落料-加热-移送-成型-冷却-精整。具体描述如下:钢板经过落料后移送至加热炉中进行预热,在550~700℃保温2~60min后移送至模具中冲压成型,成形后可在模具中压力冷却或移出模具进行风冷或空冷,冷却后采用激光切边精整,获得高强化零件。
31.钢板在成型前具有1400mpa以上的高强度马氏体组织,经过短时间加热后获得较低的强度和良好的塑性,冲压成型性能优良,冷却后零件满足rm≥1200mpa,a≥10,疲劳强度大于0.4倍的rm。
32.本发明钢板的生产及成型工艺的特点在于:
33.(1)钢板采用薄板坯连铸连轧(csp),通过控制机架间冷却水实现钢板的控制轧制,具有流程短、效率高、成本低等优点;
34.(2)钢板轧制后采用水冷或油冷直接淬火,获得高强度马氏体组织,随后采用强力卷曲设备卷曲,或直接剪板获得高强度钢板。
35.(3)钢板成型过程中可采用液压或油压压力机冲压成型,冷却后可直接移出模具在空气中进行冷却。为防止钢板与模具接触时局部冷却过快,可对冲压模具进行加热并保温。
36.(4)本发明的成型过程没有奥氏体-马氏体相变发生,因此,零件可在成型后移出模具进行空冷,也采用风冷,或放入箱式炉中进行缓冷;
37.钢板采用温成形工艺制造零件,成型温度在500~700℃温度区间,低于材料的奥氏体化温度,成型过程没有奥氏体-马氏体相变发生,零件冷却后尺寸精度良好。
38.(5)特别的,本发明钢板通过微合金元素的添加,v、ti等元素的碳化物可以作为氢陷阱,在使用过程中固定氢元素,提高钢板的耐氢致延迟断裂性能。
附图说明
39.图1为成型前钢板组织照片图。
40.图2为成型后钢板组织照片图。
具体实施方式
41.试验过程模拟钢板的薄板坯连铸连轧(csp)工艺,以及随后的冷却、热处理工艺。试验钢的生产流程为:钢水冶炼+连铸连轧+淬火(马氏体组织)+卷曲/剪板+低温回火。
42.具体生产工艺如下:
43.(1)钢水冶炼:根据csp产线设备特征和参数要求,采用电炉或感应炉冶炼,经过精炼后通过csp连铸连轧获得钢板。钢水冶炼时应严格控制有害夹杂元素,尤其是p、s和n元素含量。
44.(2)铸坯的轧制:因csp工艺流程短,道次压下量大,因此开轧温度较传统轧制偏高,避免后几道次轧制时温度过低。因此钢板在轧制前的均热温度控制在1200~1280℃,控制开轧温度在1150℃~1250℃。轧制过程中通过控制机架间冷却水调节钢板温度,实现控制轧制。根据钢板成分,再结晶区的轧制变形量控制在70%~90%,未再结晶区轧制变形量控制在10~30%,以实现钢板的晶粒细化,并储存一部分形变储能。初始轧制压下量应尽可能大,控制在40~60%,通过大变形实现晶粒的再结晶细化,后续轧制根据最终钢板的厚度进行设计。控制终轧温度在奥氏体转变温度a3点50℃以上,随后进行在线冷却淬火。
45.(3)钢板的冷却:轧制后钢板通过高速层流冷却淬火,将板材温度降至mf以下以获得马氏体组织。钢板冷却后通过强力卷曲机获得钢卷,或直接剪板获得高强度钢板。在淬火24小时内进行低温回火处理,以释放内应力,改善组织结构,避免淬火裂纹的生成。
46.实施例:
47.本发明实施例在实验室中利用小型试验炉和轧机进行试制,模拟实际生产工艺,其结果具有代表性,可推广应用于工业化生产。
48.铸锭冶炼:
49.本发明钢由试验室真空感应炉冶炼,浇铸为150kg圆锭,共冶炼6炉钢,化学成分见表1中1~6#所示。同时选择同样冶炼工艺的热成型用mnb钢进行对比,化学成分见表1中7、8#所示。
50.表1钢的化学成分(wt.%)
[0051][0052]
铸锭锻造:
[0053]
1~6#钢经过1250℃保温2h,进行开坯锻造,获得尺寸为50mm*100mm*200mm的轧制坯料.
[0054]
钢坯轧制:
[0055]
通过试验轧机模拟csp连续轧制过程,轧制道次压下量见表2。将1~6#试验钢加热至1250℃保温2h,开轧温度1180℃,经试验轧机通过7道次控制轧制,终轧温度控制在试验钢奥氏体化温度以上50℃,轧至厚度4mm。轧后钢板直接水冷淬火至室温,随后放入回火炉中进行回火,温度200℃,保温时间12小时。回火后钢板的力学性能和晶粒度等级见表3。
[0056]
表2钢板的轧制工艺参数
[0057]
道次板坯1234567厚度5030201512864
[0058]
表3钢板的力学性能及晶粒度等级
[0059][0060]
模拟温成形过程中组织和性能变化:
[0061]
将试验钢板试样放入加热炉中加热并保温,随后出炉空冷,模拟温成形的温度变化过程。具体工艺为:钢板经500~700℃保温不同的时间,然后空冷。钢板模拟温成形过程参数及处理后的钢板性能见表4。
[0062]
表4板模拟温成形过程参数
[0063][0064]
[0065]
从表中可以看出,发明钢板经过处理后,抗拉强度均达到了1200mpa以上,延伸率在19%以上,-40℃低温冲击功均在27j以上,拉压疲劳强度均达到0.43rm以上,相比对比钢种有显著提升。

技术特征:


1.一种温成型用高强钢板,其特征在于:化学成分重量百分数为:c:0.15~0.35%,mn:0.5~3.0%,p:≤0.010%,s:≤0.005%,n:≤0.006%,v:0.05~0.35%,ti:0.03~0.15%,mo:0.1~0.4%,余量为fe和不可避免的杂质;在上述成分基础上通过添加:ni:0.1~3.0%,cr:0.2~2.0%,si:0.2~1.0%,al:0.01~0.05%,nb:0.02~0.05%,b:0.0005~0.010%中的一种或几种元素。2.根据权利要求1所述的温成型用高强钢板,其特征在于:c:0.18~0.25%,mn:1.0~3.0%,p:≤0.010%,s:≤0.005%,n:≤0.004%,v:0.10~0.25%,ti:0.05~0.10%,mo:0.20~0.35%,余量为fe和不可避免的杂质。3.根据权利要求1或2所述的温成型用高强钢板,其特征在于:钢板厚度1.0-4.0mm,轧制过程中,通过机架间冷却水的控制,对轧制温度进行调控,利用再结晶控制轧制和微合金碳化物钉扎晶界,细化奥氏体晶粒至10微米以下,实现钢板的高强韧化。4.根据权利要求1-3任意一项所述的温成型用高强钢板,其特征在于:该温成型用高强钢板在成型前具有1400mpa以上的高强度马氏体组织,经过短时间加热后获得较低的强度和良好的塑性,冲压成型性能优良,冷却后零件满足rm≥1200mpa,a≥10,疲劳强度大于0.4倍的rm。5.根据权利要求1-3任意一项所述的温成型用高强钢板,其特征在于:通过微合金元素的添加,形成的v、ti元素的碳化物作为氢陷阱,具有良好的耐氢致延迟断裂性能。6.一种权利要求1-3任意一项所述的温成型用高强钢板的制备方法,其特征在于,制备工艺及控制的技术参数如下:(1)钢水采用电炉或感应炉冶炼,经真空脱气去除钢水内有害气体元素;(2)薄板坯连铸连轧:连铸坯厚度60-80mm,加热温度1200-1280℃,开轧温度1150-1250℃,采用6-8机架连轧机组轧制,前1-3机架采用高温大压下,压缩量30-60%,再结晶区轧制比例70-90%,终轧温度高于钢板a3温度50℃以上;(3)直接淬火:钢板出轧机后直接淬火,温度降至100℃以下,获得高强度全马氏体组织,随后卷曲获得钢卷或直接剪板;(4)回火:钢板或卷进行150-200℃低温回火,钢板保温时间2-4小时,钢卷保温72小时以上,消除淬火内应力;适用的温成型工艺流程为:落料-加热-移送-成型-冷却-精整;具体描述如下:钢板经过落料后移送至加热炉中进行预热,在500~700℃保温2~60min后移送至模具中冲压成型,成形后可在模具中压力冷却或移出模具进行风冷或空冷,冷却后切边精整,获得高强化零件;冲压模具进行加热并保温。

技术总结


一种温成型用钢及其制备方法,属于高强度结构件用钢板的制备工艺技术领域。钢板成分重量百分数为:C:0.15~0.35%,Mn:0.5~3.0%,P:≤0.010%,S:≤0.005%,N:≤0.006%,V:0.05~0.35%,Ti:0.03~0.15%,Mo:0.1~0.4%,余量为Fe和不可避免的杂质。在上述成分基础上还包括以下一种或几种元素:Ni:0.1~3.0%,Cr:0.2~2.0%,Si:0.2~1.0%,Al:0.01~0.05%,Nb:0.02~0.05%,B:0.0005~0.010%。钢板采用热连轧工艺制造,通过机架间冷却水调控实现控制轧制,轧后快冷获得以马氏体为主的高强钢板;经500~700℃预热后成型,成型后Rm≥1200MPa,A≥10,疲劳强度大于0.4倍的Rm,满足汽车白车身等高强度结构件和安全件的服役要求。的服役要求。的服役要求。


技术研发人员:

尉文超 时捷 孙挺 闫永明 李晓源 徐乐 何肖飞 王毛球

受保护的技术使用者:

钢铁研究总院有限公司

技术研发日:

2022.08.04

技术公布日:

2022/11/15

本文发布于:2022-11-29 18:34:59,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/4/13664.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:钢板   碳化物   温度   奥氏体
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图