1.本发明涉及热固化
粘合剂组合物的领域,所述热固化粘合剂组合物特别用于连接具有不同热膨胀系数的
基材,特别是在交通工具或白家电(weisswaren)的骨架构造中。
背景技术:
2.热固化粘合剂组合物公知已久。热固化粘合剂组合物的一个重要应用领域是车辆制造,特别是交通工具或白家电的骨架构造中的粘合。在两种情况下,在施加粘合剂组合物之后在烘箱中加热经粘合制品,由此也使得热固化粘合剂组合物固化。
3.经粘合制品的加热带来合适的骨架结构烘箱的巨大能量消耗和高投资成本。特别是当具有不同的纵向热膨胀系数的两个基材通过结构性粘合彼此连接时,会出现另一个问题。在此过程中,在120
–
220℃的烘箱中的固化步骤会导致两个基材膨胀至不同的长度。因此在随后的冷却时会在经固化粘合剂组合物(特别是基于
环氧树脂的粘合剂组合物)中产生高应力,所述高应力会导致粘接失效、基材变形,或导致粘合连接体中所谓的应力“冻结”。由于这种“冻结”,粘合连接体在其寿命期间对静态负荷、动态负荷和冲击负荷明显更敏感,这会导致粘接减弱。
4.因此,需要能够以更低能耗和更低投资成本实现的固化方法。还需要一种通过热固化粘合剂组合物使具有不同纵向热膨胀系数的基材结构性连接的方法,所述方法一方面保证用于结构性连接的足够的机械性能,另一方面能够获得降低烘箱中典型热固化期间出现的高应力的连接体。
5.发明概述
6.因此本发明的目的是提供一种具有更低能耗和更低投资成本的固化方法,其特别允许通过热固化粘合剂组合物使具有不同纵向热膨胀系数的基材结构性连接,并且能够降低经固化粘合剂组合物中的应力。
7.出乎意料地通过根据权利要求1所述的根据本发明的方法实现该目的。
8.本发明的其它方面为其它独立权利要求的主题。本发明的特别优选的实施方案为从属权利要求的主题。
9.发明详述
10.本发明涉及用于粘合热稳定性基材的方法,包括如下步骤:
11.i)在第一基材s1的表面施加热固化粘合剂组合物kl,
12.ii)使施加的热固化粘合剂组合物kl与第二基材s2的表面接触,使得施加的热固化粘合剂组合物kl布置在两个基材s1和s2之间,其中一个或两个基材、特别是仅一个基材是导电塑料基材ks,并且其中施加的热固化粘合剂组合物kl在步骤ii)之后的厚度≥0.1mm,优选≥0.3mm,优选≥0.5mm,特别是≥1mm;
13.iii)通过电阻加热而加热至少一个导电塑料基材ks。
14.在本文中,关于取代基、残基或基团而使用的表述“彼此独立地”表示:在相同分子
中以相同方式标明的取代基、残基或基团可以不同含义出现。
[0015]“增韧剂”在本文中被理解为环氧树脂基质的添加剂,以环氧树脂组合物的总重量计,所述添加剂即使在≥5重量%、特别是≥10重量%的低掺加量下也能造成韧性明显增加,因此能够在基质撕裂或断裂之前获得更高的弯曲应力、拉伸应力、冲击应力或碰撞应力。
[0016]
物质名称(例如“多元醇”、“多异氰酸酯”、“聚醚”或“聚胺”)中的前缀“聚/多”在本文中表示,每种物质在形式上每分子包含多于一个在其名称中出现的官能团。
[0017]“分子量”在本文中被理解为分子的摩尔质量(以克/摩尔计)。“平均分子量”表示低聚或聚合形式的分子混合物的数均分子量mn,其通常通过gpc相对于聚苯乙烯标样确定。
[0018]“伯羟基”表示结合至具有两个氢的碳原子的oh-基团。
[0019]
术语“伯氨基”在本文中表示结合至一个有机基团的nh
2-基团,而术语“仲氨基”表示结合至两个有机基团(也可以是环的公共部分)的nh-基团。因此具有一个伯氨基的胺被称为“伯胺”,具有一个仲氨基的胺相应地被称为“仲胺”并且具有一个叔氨基的胺被称为“叔胺”。
[0020]“室温”在本文中表示23℃的温度。
[0021]“热稳定性材料”特别被理解为在100
–
220℃、优选120
–
200℃的固化温度下至少在固化时间内形状稳定的材料。
[0022]
如果通过结构性粘合(特别是在车身骨架构造中)彼此粘合具有不同纵向热膨胀系数(δα)的两个基材(例如金属或纤维增强塑料),则在120-220℃温度的烘箱中进行的固化步骤(例如在穿过对流烤箱时)会造成两个基材膨胀至不同长度。因此在随后的冷却时(例如在穿过冷却区域时)会在经固化粘合剂组合物中产生高应力,所述高应力要么导致粘接失效、基材变形,要么导致粘合连接体中所谓的应力“冻结”。
[0023]
在电阻加热时产生热量,其中通过施加电压使得电流流过导电材料并且通过焦耳热加热。所用材料的比电阻越高,则可以使用的加热导体越短。
[0024]
一个或两个基材s1和s2、特别是仅一个基材是导电塑料基材ks。
[0025]
作为导电塑料基材ks,特别优选的是导电的纤维增强塑料。
[0026]
优选的是这样的导电塑料基材ks,其在步骤i)的时刻具有以导电塑料基材ks总重量计的小于5重量%、优选小于1重量%、优选小于0.1重量%、特别是小于0.01重量%的一定含量的热固化树脂,特别是热固化环氧树脂。这样的含有未固化状态的树脂的塑料基材的缺点在于,它们具有较低的结构性能,并且由于其粘性而难以处理。
[0027]
这些导电的纤维增强塑料优选由嵌入塑料基质的纤维构成的平面载体材料(特别是非织造布或垫)组成。优选为已经固化的塑料基质。
[0028]
由纤维和/或塑料基质构成的平面载体材料可以是导电的。
[0029]
由纤维构成的导电平面载体材料优选为金属纤维、碳纤维和导电织物纤维(特别是金属涂覆的织物纤维),特别是碳纤维。
[0030]
导电塑料基质,特别是热固性塑料或热塑性塑料,特别是热固性塑料,优选含有导电聚合物和/或导电颗粒,特别是:
[0031]-基于金属(特别优选基于铜)的导电颗粒,和/或
[0032]-基于玻璃、塑料、陶瓷、金属陶瓷、合金、矿物和岩石的导电颗粒,其本身是导电
的,或通过适当的贵金属或非贵金属涂层(特别是导电炭黑或石墨烯)而导电。
[0033]
优选地,其为选自如下的导电的纤维增强塑料:玻璃纤维增强塑料、芳纶纤维增强塑料、玄武岩纤维增强塑料和碳纤维增强塑料,特别优选的是碳纤维增强塑料。
[0034]
这些碳纤维增强塑料优选由导电碳纤维和导电或非导电塑料基质(特别是非导电塑料基质,特别优选环氧树脂基质)组成。
[0035]
优选地,导电塑料基材ks是可以通过在20℃下电阻加热而被加热超过30开尔文、特别是超过50开尔文的材料。
[0036]
优选地,导电塑料基材ks是比电阻为1
–
150、5
–
100、特别是10-75ω
·
mm2/m的材料。优选地,比电阻是20℃下的比电阻。
[0037]
金属基材ms优选为选自如下的金属:钢,特别是电解镀锌钢、热浸镀锌钢、涂油钢、硼锌(bonazink)涂层钢和后续磷化的钢,以及铝,特别是铝。
[0038]
两个基材s1和s2之间的纵向热膨胀系数(δα)之差为8
–
30*10-6
[k-1
],特别是10
–
25*10-6
[k-1
]、15
–
25*10-6
[k-1
],特别优选20
–
25*10-6
[k-1
]。优选地,上述纵向膨胀系数(δα)是20℃下的纵向膨胀系数(δα)。纵向热膨胀系数(δα)的确定优选通过膨胀计进行。
[0039]
热固化粘合剂组合物kl优选为选自如下的热固化粘合剂组合物kl:丙烯酸酯粘合剂组合物、聚氨酯粘合剂组合物和环氧粘合剂组合物,优选聚氨酯粘合剂组合物和环氧粘合剂组合物,特别是环氧粘合剂组合物。
[0040]
可能的热固化聚氨酯粘合剂组合物例如是包含表面失活的多异氰酸酯和至少一种异氰酸酯反应性组分的单组分聚氨酯粘合剂组合物,其中优选一种组分具有聚合物性质。表面失活的多异氰酸酯可以是通过与h活性化合物形成多加合物而失活的多异氰酸酯,通过嵌入笼状组分(分子筛)而失活的多异氰酸酯,或通过包封而失活的多异氰酸酯。
[0041]
热固化粘合剂组合物kl优选是热固化环氧粘合剂组合物,特别优选单组分热固化环氧树脂组合物,所述组合物包含:
[0042]
a)至少一种每分子具有平均多于一个环氧基团的环氧树脂a;和
[0043]
b)至少一种用于环氧树脂的潜伏固化剂b。
[0044]
每分子具有平均多于一个环氧基团的环氧树脂a优选为液体环氧树脂或固体环氧树脂。术语“固体环氧树脂”是环氧化物领域的技术人员熟知的并且与“液体环氧树脂”对照使用。固体树脂的玻璃化转变温度高于室温,即其在室温下可以粉碎成能自由流动的粉末。
[0045]
优选地,环氧树脂具有式(ii)
[0046][0047]
在此,取代基r'和r
″
彼此独立地表示h或ch3。
[0048]
对于固体环氧树脂,指数s表示》1.5,特别是2至12的值。
[0049]
这种固体环氧树脂例如可从dow或huntsman或hexion市购获得。
[0050]
指数s在1和1.5之间的式(ii)的化合物被本领域技术人员称为半固体环氧树脂。所述半固体环氧树脂对于本发明而言同样被视为是固体树脂。然而优选狭义上的固体环氧树脂,即指数s具有》1.5的值。
[0051]
对于液体环氧树脂,指数s表示小于1的值。s优选表示小于0.2的值。
[0052]
因此其优选为双酚-a(dgeba)、双酚-f以及双酚-a/f的二缩水甘油醚。所述液体树脂例如以gy 250、py 304、gy 282(huntsman)或d.e.r.
tm 331或d.e.r.
tm 330(dow)或epikote 828(hexion)获得。
[0053]
还适合作为环氧树脂a的是所谓的环氧线性酚醛清漆。其特别具有下式:
[0054]
其中或ch2,r1=h或甲基,并且z=0至7。
[0055]
特别地,其在此为苯酚-环氧线性酚醛清漆或甲酚-环氧线性酚醛清漆(r2=ch2)。
[0056]
所述环氧树脂以商标名epn或ecn以及从huntsman市购获得或者以产品系列d.e.n.
tm
从dow chemical市购获得。
[0057]
环氧树脂a优选表示式(ii)的液体环氧树脂。
[0058]
在一个特别优选的实施方案中,热固化环氧树脂组合物不仅包含至少一种式(ii)的液体环氧树脂(其中s《1,特别是小于0.2),而且包含至少一种式(ii)的固体环氧树脂(其中s》1.5,特别是2至12)。
[0059]
优选地,环氧树脂a的份数为10
–
60重量%,特别是30
–
50重量%,以环氧树脂组合物的总重量计。
[0060]
还有利的是,60-100重量%、特别是60-80重量%的环氧树脂a为上述液体环氧树脂。
[0061]
还有利的是,0-40重量%、特别是20-40重量%的环氧树脂a为上述固体环氧树脂。
[0062]
热固化环氧树脂组合物包含至少一种用于环氧树脂的潜伏固化剂b。所述潜伏固化剂b通过升高的温度(优选70℃或更高的温度)活化。
[0063]
所述固化剂b优选为选自双氰胺、胍、多元羧酸的酸酐、二酰肼和氨基胍的固化剂。
[0064]
特别优选的固化剂b是双氰胺。
[0065]
以环氧树脂a的重量计,用于环氧树脂的潜伏固化剂b的量有利地为0.1-30重量%,特别是0.2-10重量%,优选1-10重量%,特别优选5-10重量%。
[0066]
优选地,热固化环氧树脂组合物还包含至少一种用于环氧树脂的促进剂c。这种起促进作用的固化剂优选为取代脲,例如3-(3-氯-4-甲基苯基)-1,1-二甲基脲(绿麦隆)或苯基-二甲基脲,特别是对氯苯基-n,n-二甲基脲(灭草隆)、3-苯基-1,1-二甲基脲(非草隆)或3,4-二氯苯基-n,n-二甲基脲(敌草隆)。还可以使用咪唑类化合物,例如2-异丙基咪唑或2-羟基-n-(2-(2-(2-羟基苯基)-4,5-二氢咪唑-1-基)乙基)苯甲酰胺、咪唑啉和胺络合物。
[0067]
优选地,用于环氧树脂的促进剂c选自取代脲、咪唑、咪唑啉和胺络合物。
[0068]
特别优选地,特别当潜伏固化剂b为胍(特别是双氰胺)时,用于环氧树脂的促进剂
c选自取代脲和胺络合物。
[0069]
单组分热固化环氧树脂组合物优选包含至少一种增韧剂d。所述增韧剂d可以为固体或液体。
[0070]
特别地,增韧剂d选自末端封闭的聚氨酯聚合物d1、液体橡胶d2和核-壳聚合物d3。优选地,增韧剂d选自末端受封闭的聚氨酯聚合物d1和液态橡胶d2。特别优选地,增韧剂d为末端受封闭的聚氨酯聚合物d1。
[0071]
当增韧剂d为末端封闭的聚氨酯聚合物d1时,其优选为式(i)的末端封闭的聚氨酯预聚物。
[0072][0073]
在此r1表示被异氰酸酯基团封端的线性或支化的聚氨酯预聚物在除去端部异氰酸酯基团之后的p价基团,并且p表示2至8的值。
[0074]
此外,r2彼此独立地表示选自如下基团的取代基
[0075][0076]
在此r5、r6、r7和r8分别各自独立地表示烷基或环烷基或芳烷基或芳基烷基,或者r5连同r6或r7连同r8形成任选取代的4元环至7元环的一部分。
[0077]
此外,r9'和r
10
分别各自独立地表示烷基或芳烷基或芳基烷基或烷氧基或芳氧基或芳烷氧基,并且r
11
表示烷基。
[0078]r12
、r
13
和r
14
分别各自独立地表示具有2至5个c原子的任选具有双键或被取代的亚烷基,或亚苯基或氢化亚苯基。
[0079]r15
、r
16
和r
17
分别各自独立地表示h或烷基或芳基或芳烷基,并且r
18
表示芳烷基或
任选具有芳族羟基的取代或未取代的单核或多核芳族化物基团。
[0080]
最后,r4表示包含伯羟基或仲羟基的脂族、脂环族、芳族或芳脂族环氧化物在除去羟基和环氧基团之后的基团,并且m表示1、2或3的值。
[0081]
作为r
18
,一方面特别考虑酚或多酚,特别是双酚在除去羟基之后的基团。所述酚和双酚的优选示例特别是苯酚、甲酚、间苯二酚、焦儿茶酚、腰果酚(3-十五烯基酚(得自腰果壳油))、壬基酚、与苯乙烯或二环戊二烯反应的酚、双酚-a、双酚-f和2,2'-二烯丙基-双酚-a。作为r
18
,另一方面特别考虑羟基苯甲醇和苯甲醇除去一个羟基之后的基团。
[0082]
当r5、r6、r7、r8、r9、r9’
、r
10
、r
11
、r
15
、r
16
或r
17
表示烷基时,其特别是线性或支化的c
1-c
20-烷基。
[0083]
当r5、r6、r7、r8、r9、r9’
、r
10
、r
15
、r
16
、r
17
或r
18
表示芳烷基时,所述基团特别是通过亚甲基结合的芳族基团,特别是苯甲基。
[0084]
当r5、r6、r7、r8、r9、r9’
或r
10
表示烷基芳基时,其特别是通过亚苯基结合的c
1-至c
20-烷基,例如甲苯基或二甲苯基。
[0085]
基团r2优选为下式的取代基
[0086]
‑‑‑
o-r
18
或
[0087]
作为式的取代基,优选的是ε-己内酰胺在除去nh-质子之后的基团。
[0088]
作为式
‑‑‑
o-r
18
的取代基,优选的是单酚或多酚(特别是双酚)在除去酚氢原子之后的基团。这种基团r2的特别优选的示例是选自如下的基团
[0089][0090][0091]
基团y在此表示具有1至20个碳原子,特别是1至15个碳原子的饱和芳族或烯属不饱和的烃基。特别优选作为y的是烯丙基、甲基、壬基、十二烷基、苯基、烷基醚、羧酸酯或具有1至3个双键的不饱和c
15-烷基。
[0092]
r2最优选表示
‑‑‑
or
18
。
[0093]
通过异氰酸酯基团封端的线性或支化聚氨酯预聚物与一种或多种异氰酸酯反应性化合物r2h来制备式(i)的末端封闭的聚氨酯预聚物。如果使用多种所述异氰酸酯反应性化合物,则反应可以依次进行或者与化合物的混合一起进行。
[0094]
优选进行所述反应使得一种或多种异氰酸酯反应性化合物r2h以化学计量或化学计量过量的量使用,从而保证所有nco-基团都反应。
[0095]
r1所基于的具有异氰酸酯端基的聚氨酯预聚物可以由至少一种二异氰酸酯或三异氰酸酯以及由具有端部氨基、巯基或羟基的聚合物q
pm
和/或由任选取代的多酚q
pp
制得。
[0096]
合适的二异氰酸酯为脂族、脂环族、芳族或芳脂族的二异氰酸酯,特别是市售产品例如亚甲基二苯基二异氰酸酯(mdi)、六亚甲基二异氰酸酯(hdi)、甲苯二异氰酸酯(tdi)、二甲基联苯二异氰酸酯(todi)、异佛尔酮二异氰酸酯(ipdi)、三甲基六亚甲基二异氰酸酯(tmdi)、2,5-或2,6-双-(异氰酸酯基甲基)-双环[2.2.1]庚烷、1,5-萘二异氰酸酯(ndi)、二环己基甲基二异氰酸酯(h
12
mdi)、对-亚苯基二异氰酸酯(ppdi)、间-四甲基苯二甲基二异氰酸酯(tmxdi)等及其二聚物。优选的为hdi、ipdi、mdi或tdi。
[0097]
合适的三异氰酸酯为脂族、脂环族、芳族或芳脂族二异氰酸酯的三聚物或缩二脲,特别是上一段落所述的二异氰酸酯的异氰脲酸酯和缩二脲。当然还可以使用二异氰酸酯或三异氰酸酯的合适的混合物。
[0098]
特别适合作为具有端部氨基、巯基或羟基的聚合物q
pm
的是具有两个或三个端部氨基、巯基或羟基的聚合物q
pm
。
[0099]
聚合物q
pm
有利地具有300
–
6000、特别是600
–
4000、优选700-2200g/当量nco-反应性基团的当量。
[0100]
优选作为聚合物q
pm
的是选自如下的平均分子量在600和6000道尔顿之间的多元醇:聚乙二醇、聚丙二醇、聚乙二醇-聚丙二醇-嵌段聚合物、聚丁二醇、羟基封端的聚丁二烯、羟基封端的丁二烯-丙烯腈-共聚物及其混合物。
[0101]
特别优选作为聚合物q
pm
的是具有c
2-c
6-亚烷基或具有混合的c
2-c
6-亚烷基的用氨基、巯基或优选羟基封端的α,ω-二羟基聚亚烷基二醇。特别优选的是聚丙二醇或聚丁二醇。还特别优选的是羟基封端的聚氧亚丁基。
[0102]
特别适合作为多酚q
pp
的是双酚、三酚和四酚。其不仅被理解为纯酚,而且任选还被理解为取代的酚。取代基的种类可以非常多样。特别地,其被理解为直接位于与酚oh-基团结合的芳族核上的取代基。此外,酚不仅被理解为单核芳族化物,还被理解为多核或稠合芳族化物或杂芳族化物,其具有直接位于芳族化物或杂芳族化物上的酚oh-基团。
[0103]
在一个优选的实施方案中,聚氨酯预聚物由至少一种二异氰酸酯或三异氰酸酯以及具有端部氨基、巯基或羟基的聚合物q
pm
制得。聚氨酯预聚物的制备以聚氨酯领域技术人员已知的方式和方法进行,特别地,其中二异氰酸酯或三异氰酸酯相对于聚合物q
pm
的氨基、巯基或羟基以化学计量过量使用。
[0104]
具有异氰酸酯基团的聚氨酯预聚物优选具有弹性特征。其优选具有小于0℃的玻璃化转变温度tg。
[0105]
增韧剂d可以为液体橡胶d2。液体橡胶在此可以例如是羧基封端或环氧化物封端的聚合物。
[0106]
在第一个实施方案中,所述液体橡胶可以是羧基封端或环氧化物封端的丙烯腈/丁二烯-共聚物或其衍生物。这种液体橡胶例如以名称hypro/ctbn和ctbnx和etbn从emerald perfomance materials市购获得。适合作为衍生物的特别是具有环氧基团的弹性体改性的预聚物,例如以公司(schill+seilacher gruppe,德国)的产品系列特别是产品系列特别是产品系列或以产品系列albipox(evonik,德国)市售的那些。
[0107]
在第二个实施方案中,所述液体橡胶可以是聚丙烯酸酯液体橡胶,所述聚丙烯酸酯液体橡胶可以与液体环氧树脂完全混合并且在环氧树脂基质固化时才分离成微滴。这种聚丙烯酸酯液体橡胶例如可以名称20208-xpa从dow获得。
[0108]
当然还可以使用液体橡胶的混合物,特别是羧基封端或环氧化物封端的丙烯腈/丁二烯共聚物或其衍生物的混合物。
[0109]
在第三个实施方案中,增韧剂d可以是核-壳聚合物d3。核-壳聚合物由弹性核聚合物和刚性壳聚合物组成。特别合适的核-壳聚合物由被刚性热塑性聚合物的刚性皮(壳)包围的弹性丙烯酸酯聚合物或丁二烯聚合物的芯(核)组成。所述核-壳结构通过嵌段共聚物的分离自发形成,或者通过乳液聚合或悬浮体聚合形式的聚合进程与随后的接枝而形成。优选的核-壳聚合物为所谓的mbs聚合物,其可以kaneka的商标名kaneace
tm
,arkema的商标名clearstrength
tm
,dow的商标名paraloid
tm
或zeon的商标名f-351
tm
市购获得。
[0110]
增韧剂d的份额优选为5-50重量%,10-40重量%,特别优选15-30重量%,以环氧树脂组合物的总重量计。
[0111]
在另一个优选的实施方案中,组合物还包含至少一种填料f。其优选为云母、滑石、高岭土、钙硅石、长石、正长岩、绿泥石、膨润土、蒙脱土、碳酸钙(沉淀或研磨)、白云石、石英、二氧化硅(热解或沉淀)、方晶石、氧化钙、氢氧化铝、氧化镁、陶瓷空心球、玻璃空心球、有机空心球、玻璃球、着颜料。
[0112]
有利地,所有填料f的总份额为5
–
40重量%,优选10
–
30重量%,以环氧树脂组合物的总重量计。
[0113]
特别优选的单组分环氧树脂组合物包含:
[0114]-以环氧树脂组合物的总重量计,10
–
60重量%、特别是20-50重量%的每分子具有平均多于一个环氧基团的环氧树脂a;优选地,60-100重量%、特别是60-80重量%的环氧树脂a为液体环氧树脂并且0-40重量%、特别是20-40重量%的环氧树脂a为固体环氧树脂;
[0115]-至少一种用于环氧树脂的潜伏固化剂b,所述潜伏固化剂b优选选自双氰胺、胍、多元羧酸的酸酐、二酰肼和氨基胍及其衍生物,其中优选双氰胺;
[0116]-优选至少一种促进剂c,所述促进剂c选自取代的脲、咪唑、咪唑啉和胺络合物,特别选自取代的脲和胺络合物,特别优选取代的脲;
[0117]-至少一种上述增韧剂d,其中优选上文作为优选增韧剂d描述的那些;增韧剂d的含量优选为20-60重量%、25-55重量%、30-50重量%,以环氧树脂组合物的总重量计;
[0118]-以环氧树脂组合物的总重量计,优选5-40重量%、优选10-30重量%的填料f,所述填料f优选选自钙硅石、碳酸钙、氧化钙、着颜料(特别是炭黑)和热解二氧化硅,特别是碳酸钙、氧化钙和热解二氧化硅;
[0119]
还可能有利的是,以环氧树脂组合物的总重量计,优选的热固化环氧树脂组合物的大于80重量%、优选大于90重量%、特别是大于95重量%、特别优选大于98重量%、最优选大于99重量%由上述成分组成。
[0120]
特别优选的组合物的实施例例如为表1中的组合物。
[0121]
有利的是,热固化环氧树脂组合物在25℃下具有100-10000pa
*
s,特别是500-5000pa
*
s,优选1000-3000pa
*
s的粘度。其优点在于,由此保证良好的可施用性。有利地,在生产商anton paar的mcr 101型流变仪上通过使用板-板几何形状在25℃的温度下以如下参数以振荡方式进行粘度测量:5hz,1mm间隙,板-板距离25mm,1%变形。
[0122]
特别优选为在固化状态下具有如下性质的热固化环氧树脂组合物kl:
[0123]-大于10mpa,大于15mpa,大于20mpa的拉伸剪切强度,所述拉伸剪切强度特别根据din en 1465测得,和/或
[0124]-大于10mpa,大于15mpa,大于20mpa的拉伸强度,所述拉伸强度特别根据din en iso 527测得,和/或
[0125]-大于10%,大于20%,大于30%,特别是30-200%,特别优选30-150%的断裂伸长,所述断裂伸长特别根据din en iso 527测得,和/或
[0126]-300-1000mpa,特别是500-800mpa的弹性模量,所述弹性模量特别根据din en iso 527测得,
[0127]-在23℃下大于30n/mm,大于40n/mm,大于60n/mm的冲击剥离强度,所述冲击剥离强度特别根据iso 11343测得,和/或
[0128]-大于5n/mm,大于8n/mm,大于10n/mm的角剥离强度,所述角剥离强度特别根据din 53281测得。
[0129]
优选地,在步骤i)中,将热固化粘合剂组合物kl以粘合剂胶条的形式施加至第一基材s1的表面,所述粘合剂胶条的厚度为5
–
50mm、特别是7.5
–
30mm、优选10
–
20mm,长度为5
–
500cm、特别是10
–
200cm、优选20
–
100cm。优选地,在自动化工艺中(特别是通过涂装机器人)施加热固化粘合剂组合物kl。例如相比于圆形施加或方形施加,其优点在于通过施加的热固化粘合剂组合物kl减小了两个基材s1和s2之间的接触表面。一方面,这减少了通过粘合剂组合物kl的允许热量传递的热桥面积,热量传递会导致两个基材s1和s2的长度膨胀差异更大。另一方面,这减少了经固化粘合剂组合物的量,从而减少了粘合连接体中潜在的“冻结”应力的量。
[0130]
还优选的是,施加的热固化粘合剂组合物kl在步骤ii)和/或步骤iii)之后的厚度≥0.3mm,优选≥0.5mm,优选≥1mm,特别是≥1.5mm。优选地,厚度≤5mm,优选≤4mm,优选≤3mm,特别是≤2.5mm。优选地,根据穿过两个基材与粘合剂组合物的复合物的横截面来确定厚度。所述厚度优选对应于两个基材s1和s2在与热固化粘合剂组合物的接触区域中的平均距离。
[0131]
优选地,在步骤i)中,将热固化粘合剂组合物kl施加至第一基材s1的小于30%的总表面积上,特别是第一基材s1的小于20%、小于10%、小于5%、特别是小于3%的总表面积。其优点在于通过施加的热固化粘合剂组合物kl减小了两个基材s1和s2之间的接触面积。一方面,这减少了通过粘合剂组合物kl的允许热量传递的热桥面积,热量传递会导致两个基材s1和s2的长度膨胀差异更大。另一方面,这减少了经固化粘合剂组合物的量,从而减
少了粘合连接体中潜在的“冻结”应力的量。
[0132]
还可能有利地,在步骤i)中,将热固化粘合剂组合物kl施加至第一基材s1的超过0.01%的总表面积上,特别是第一基材s1的超过0.1%、超过0.5%、超过1%、特别是超过2%的总表面积。
[0133]
优选地,两个基材s1和s2中的每一个,特别是在与施加的热固化粘合剂组合物接触的位置处,具有的厚度≥0.5mm,优选≥0.75mm,特别是≥1mm,优选厚度≤5mm,优选≤4mm,特别是≤3mm。优选地,根据穿过两个基材与粘合剂组合物的复合物的横截面来确定厚度。
[0134]
根据本发明的方法优选是用于车辆制造和夹层板制造的方法,特别是用于车辆制造,特别优选用于汽车制造,最优选用于汽车的骨架构造。
[0135]
在步骤iii)中通过电阻加热而加热至少一个导电塑料基材ks。
[0136]
优选地,在步骤iii)中,将至少一个导电塑料基材ks加热至100
–
220℃,特别是120
–
200℃,优选140和200℃之间,特别优选150和190℃之间的温度。
[0137]
还优选地,将导电塑料基材ks保持在上述温度下5分钟
–
6小时,优选10分钟-2小时,优选10分钟-60分钟,优选10分钟-30分钟,特别优选10分钟-20分钟。令人惊讶地发现,通过电阻加热制备的样品具有更高的拉伸剪切强度值,特别是在粘合剂层的层厚度较大的情况下。特别地,电阻固化的固化时间不到烘箱中热固化的一半,这节省了大量时间。例如,这可以从表2中的拉伸剪切强度测量结果中看出。
[0138]
附图标记列表
[0139]
图1和图2显示了由铝型材和cfk板制成的复合构造的结构横截面示意图,这将在下面的实验部分中提到。其中显示:
[0140]
1 铝型材
[0141]
2 cfr板
[0142]
3 绝缘螺钉
[0143]
4 间隔件(1mm)
[0144]
5 粘合剂
[0145]
6 固定夹(绝缘)
[0146]
7 间隙
[0147]
8 电极
[0148]
通过这种上文所述的方法获得经粘合制品。所述制品优选为车辆或车辆的部件。本发明的另一个方面因此涉及由上述方法获得的经粘合制品。当然,除了热固化粘合剂之外,通过上述组合物还可以实现密封料。此外,根据本发明的方法不仅适合车辆构造而且适合其它应用领域。特别要提及的是在运输工具(例如船、货车、大客车或轨道车辆)或日用品构造(例如洗衣机)中的相关应用。
[0149]
经由上述组合物粘合的材料可以在通常120℃和-40℃之间,优选100℃和-40℃之间,特别是80℃和-40℃之间的温度下使用。
实施例
[0150]
下文列出一些实施例,所述实施例进一步阐述本发明但是不应当以任何方式限制
本发明的范围。
[0151]
δα应力的确定
[0152]
将cfk基材和铝基材彼此粘合,以模拟具有最高可能的δα的δα应力(不同热伸长)的作用。使用根据表1的热固化单组分环氧树脂组合物作为粘合剂。
[0153][0154]
表1
[0155]
cfk板类型:sika carbodur s626,宽度60mm
×
长度600mm(或800mm),厚度2.6mm
[0156]-热膨胀系数:α=0.2*10-6
k-1
[0157]-碳纤维热导率:17w/(m*k)
[0158]-碳纤维比电阻:66ω*mm2/m
[0159]
铝型材,宽度60mm
×
深度80mm
×
长度600mm,厚度:3mm
[0160]
热膨胀系数:α=23.8*10-6
k-1
[0161]
热导率:205w/(m*k)
[0162]
比电阻:0.027ω*mm2/m
[0163]
使用以下作为热源:
[0164]
sika carbo加热器2(ch),瑞士sika services
[0165]-最大输出功率:6kw
[0166]-输入电流:对于单相,固定最大输入电流为:6a、10a、16a。
[0167]-可编程参数:目标温度分布、加热时间、最大输出电流(使用10a)。
[0168]
测试方法
[0169]
为了可视化δα应力,如图1和图2所示,组装由上述铝型材(1)和上述cfk板(2)制成的简化复合构造,并且在烘箱(图1)中进行固化或通过sika carbo加热器2(图2)进行固化。图1的结构中cfk板长度600mm,图2的结构中为800mm(用于连接电极的额外空间)。
[0170]
间隔件(4)(厚度为1mm)、所用螺钉(3)和固定夹(6)是相对于热和电流绝缘的材料。
[0171]
烘箱中的固化在175℃的烘箱温度下进行35分钟。
[0172]
使用sika carbo加热器2通过以下设置进行固化:
[0173]-加热时间22分钟(温度分布如图3所示),输出电流10a。
[0174]
对于两种复合构造,在固化步骤之后,比较了由于间隙增加而导致的cfk板的弯曲。粘合剂的固化使两个基材在加热状态下的布置冻结,这在冷却状态下表现为cfk板的变形。变形/间隙增加越强,经固化粘合剂中冻结/建立的应力越高。
[0175]
使用温度探针记录了在借助于sika carbo加热器2固化期间铝型材和cfk板的加热温度分布,如图3所示。
[0176]
在两个基材上分别应用三个温度探针:
[0177]
cfrp-1:在cfk板上,靠近粘合剂
[0178]
cfrp-2:在cfk板上,靠近间隙
[0179]
cfrp-3:在cfk板上,靠近螺钉
[0180]
al-1:在铝型材上,靠近粘合剂
[0181]
al-2:在铝型材上,靠近间隙
[0182]
al-3:在铝型材上,靠近螺钉
[0183]
根据图3中的温度测量发现,在铝基材上的粘合区域发生了热传递,并且铝基材也被加热,但仅加热至约95℃。
[0184]
以下计算显示了175℃固化时相比于95℃固化时铝型材长度增加的理论差异。
[0185]
根据下式,可以计算两种固化温度下的纵向膨胀系数之差(δl)。
[0186]
δl=l0*α*δt
[0187]
l0=600mm
[0188]
δl
alu烘箱
=600mm*23.8*10-6
k-1
*150k=2.14mm
[0189]
δl
alu carbo加热器
=600mm*23.8*10-6
k-1
*70k=1.0mm
[0190]
令人惊讶地发现,当使用电致热将5.5mm的粘合剂固化(烘箱固化)时,由于铝的加热较少,固化和冷却之后所产生的变形(间隙增长)减少至仅1.5mm,这对应于约72%的改进。尽管使用了厚度为1.0mm的间隔件(4),但由于用螺钉(3)固定基材,固化之前的间隙宽度为2.5mm。
[0191]
拉伸剪切强度测量
[0192]
然后使用钢(dc04)和cfk(carbodur)制备拉伸剪切强度样品。
[0193]
拉伸剪切强度(zsf)(din en 1465)
[0194]
借助于表1的粘合剂组合物,将测试钢板(dc04)(50mm
×
10mm
×
3mm)以25
×
10mm的粘合面积(使用玻璃珠作为间隔件)和0.3mm或3.0mm的层厚度与cfk板(carbodur s626)(50mm
×
10mm
×
3.2mm)粘合并且在给定的固化条件下固化。
[0195]
固化条件:
[0196]-在175℃的烘箱温度下35分钟“烘箱内热固化(35分钟/175
°
)”[0197]-使用carbo加热器2通过以下设置进行电固化:加热时间15分钟,输出电流10a“电固化(15分钟/10a)”[0198]
在拉伸机上以10mm/min的拉伸速度通过3次测定根据din en1465确定拉伸剪切强度。测量值列于表2中。
[0199][0200]
表2
[0201]
令人惊讶地发现,借助于电阻加热制备的样品具有更高的拉伸剪切强度值,特别是在粘合剂层的层厚度较大的情况下。特别地,电阻固化的固化时间不到烘箱中热固化的一半,这节省了大量时间。
技术特征:
53281测得。10.根据前述权利要求中任一项所述的方法,其中在步骤i)中,将热固化粘合剂组合物kl以粘合剂胶条的形式施加至第一基材s1的表面上,所述粘合剂胶条的厚度为5
–
50mm、特别是7.5
–
30mm、优选10
–
20mm,长度为5-500cm、特别是10-200cm,优选20-100cm。11.根据前述权利要求中任一项所述的方法,其中施加的热固化粘合剂组合物kl在步骤ii)和/或步骤iii)之后的厚度≥0.3mm,优选≥0.5mm,优选≥1mm,优选≥1.5mm,优选厚度≤5mm,优选≤4mm,优选≤3mm,特别是≤2.5mm。12.根据前述权利要求中任一项所述的方法,其中在步骤i)中,将热固化粘合剂组合物kl施加至第一基材s1的小于30%的总表面积,特别是第一基材s1的小于20%,小于10%,小于5%,特别是小于3%的总表面积。13.根据前述权利要求中任一项所述的方法,其中两个基材s1和s2中的每一个,特别是在与施加的热固化粘合剂组合物接触的位置处,具有的厚度≥0.5mm,优选≥0.75mm,优选≥1mm,优选厚度≤5mm,优选≤4mm,特别是≤3mm。14.根据前述权利要求中任一项所述的方法,其中在步骤iii)中将至少一个导电塑料基材ks加热至100
–
220℃,特别是120
–
200℃,优选140和200℃之间,特别优选150和190℃之间的温度,优选将导电塑料基材ks保持在上述温度下5分钟
–
6小时,优选10分钟-2小时,优选10分钟-60分钟,优选10分钟-30分钟,特别优选10分钟-20分钟。15.根据前述权利要求中任一项所述的方法,其中所述方法是用于车辆制造和夹层板制造的方法,特别是用于车辆制造,特别优选用于汽车制造。
技术总结
本发明涉及用于粘合热稳定性基材的方法,包括如下步骤:i)在第一基材S1的表面施加热固化粘合剂组合物KL,i i)使施加的热固化粘合剂组合物KL与第二基材S2的表面接触,其中一个或两个基材、特别是只有一个基材是导电塑料基材KS;i i i)通过电阻加热而加热至少一个导电塑料基材KS。本发明提供了一种具有更低能耗和更低投资成本的固化方法,其特别允许借助于热固化粘合剂组合物结构性连接具有不同纵向热膨胀系数的基材,并且能够降低固化粘合剂组合物中的应力。中的应力。中的应力。
技术研发人员:
D
受保护的技术使用者:
SIKA技术股份公司
技术研发日:
2021.05.10
技术公布日:
2022/12/30