一种动车组列车控制方法、系统、电子设备及存储介质

阅读: 评论:0



1.本发明涉及列车运行控制领域,特别是涉及一种动车组列车一体化控制方法、系统、设备及介质。


背景技术:



2.随着中国经济社会的快速发展,人口密度逐渐提高,安全便捷的出行成为中国城市居民日常工作生活的重要组成部分,随之而来的是对交通运输系统更加严厉的考验。动车组列车具有速度快、效率高、占地少、能耗低、污染小的优势,在中国交通运输体系起到重要的骨干作用。列车自动驾驶系统能够完成复杂参数的自动控制,在保障列车运行安全的基础上,同时也使得运行的效率、旅客的舒适度、节能以及停车精度等性能指标得到提高。更重要的是自动驾驶能够减少工作人员失误,改善工作条件,提高系统可靠性。
3.中国动车组列车均为动力分散式,但动力控制集中,动车组列车编组多样,有8节车辆的编组、16节车辆的编组,也有由两列8节车辆编组重联构成的16节车辆编组;不同编组的动车组列车中动车、拖车比例及排列方式不同,其中动车既能提供牵引力又能提供制动力,拖车只能提供制动力。当列车开启自动驾驶模式时,ato根据运行时分、车辆参数、线路参数等计算推荐速度曲线,然后控制器利用pid控制算法输出列车控制指令;车辆根据ato输出的控制指令,计算各动力单元的牵引/制动指令,最后完成对列车牵引/制动的控制。
4.综上所述,现有动车组列车ato中轨迹跟踪控制方法存在如下缺陷:
5.1、目前,动车组列车的控制指令由ato中的控制器算法输出后发送给车辆控制单元,车辆控制单元根据动力单元数量平均分配牵引力/制动力。然而,实际列车运行过程中每个动力单元的状态存在差异(如每个动力单元所在位置的坡度不同,每个动力单元的质量不同,以及每个动力单元所受的阻力不同等),直接给每个动力单元平均分配牵引力/制动力,不仅会增加动力单元间的相互作用力,还会使列车能耗增加。
6.2、控制器中的pid控制算法根据列车当前速度与ato计算的推荐速度的误差生成控制指令,达到列车实时跟踪推荐速度曲线的目的,但该方法牵引/制动切换频繁,列车跟踪过程能耗大,乘客舒适性差。


技术实现要素:



7.本发明的目的是提供一种动车组列车控制方法、系统、设备及介质,以解决现有技术中的对动车组列车的控制方法导致列车能耗大的问题。
8.为实现上述目的,本发明提供了如下方案:
9.一种动车组列车控制方法,包括:
10.获取动车组列车单节车辆的受力情况、速度以及位置;
11.以执行器饱和与车钩力限制为约束,以未来有限时域内列车跟踪误差、车钩力以及能耗为优化目标,根据所述受力情况、速度以及位置,构建动车组列车轨迹跟踪控制模
型;
12.利用所述动车组列车轨迹跟踪控制模型对设定时间范围内的动车组列车跟踪误差、车钩力以及能耗进行预测,得到第一预测结果;
13.根据所述第一预测结果,构建离散的优化目标模型;
14.获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果;所述优化结果为优化后的车头/车辆位置和优化后的车头/车辆速度;
15.将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头/车辆的位置和速度。
16.可选地,所述根据所述第一预测结果,构建离散的优化目标模型,具体包括:
17.基于多点打靶法,以设定预测步长将所述第一预测结果离散化为多步第二预测结果;
18.根据多步所述第二预测结果,构建离散的优化目标模型。
19.可选地,所述获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果,具体包括:
20.利用所述离散的优化目标模型将所述动车组列车的运行轨迹转化为非线性规划问题;
21.利用序列二次规划算法,对所述非线性规划问题进行求解,得到优化结果。
22.可选地,所述将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头/车辆的位置和速度,具体包括:
23.以所述设定预测步长,根据所述优化结果,控制车头的动力单元和各车辆的动力单元。
24.可选地,还包括:
25.判断动车组列车运行的当前时刻是否大于或等于设定时刻;
26.若所述动车组列车运行的当前时刻大于或等于设定时刻,则控制结束;
27.若所述动车组列车运行的当前时刻小于设定时刻,则返回“获取动车组列车每节车厢的受力情况、速度以及位置”的步骤。
28.一种动车组列车控制系统,包括:
29.数据获取模块,用于获取动车组列车单节车辆的受力情况、速度以及位置;
30.轨迹跟踪控制模型构建模块,用于以执行器饱和与车钩力限制为约束,以未来有限时域内列车跟踪误差、车钩力以及能耗为优化目标,根据所述受力情况、速度以及位置,构建动车组列车轨迹跟踪控制模型;
31.预测模块,用于利用所述动车组列车轨迹跟踪控制模型对设定时间范围内的动车组列车跟踪误差、车钩力以及能耗进行预测,得到第一预测结果;
32.优化目标模型构建模块,用于根据所述第一预测结果,构建离散的优化目标模型;
33.优化模块,用于获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果;所述优化结果为优化后的车头/车辆位置和优化后的车头/车辆速度;
34.反馈模块,用于将所述优化结果反馈至动车组列车的各动力单元,调整动力组列
车的车头/车辆的位置和速度。
35.一种电子设备,包括:存储器及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行上述的动车组列车控制方法。
36.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述的动车组列车控制方法。
37.根据本发明提供的具体实施例,本发明公开了以下技术效果:
38.本发明的动车组列车控制方法通过获取动车组列车单节车厢的受力情况、速度以及位置,并构建动车组列车轨迹跟踪控制模型;然后对设定时间范围内的动车组列车跟踪误差、车钩力以及能耗进行预测,根据预测结果,构建离散的优化目标模型;获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果;将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头/车辆的位置和速度。本发明通过获取每节车厢的受力情况、速度以及位置,构建离散的优化目标模型,对列车运行轨迹进行优化,得到优化结果,根据优化结果对车辆和机车相应的动力单元进行控制,避免了给每个动力单元平均分配牵引/制动力,使动力单元之间的相互作用力增加,降低了列车运行的能耗。
附图说明
39.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
40.图1为目前的动车组列车的机车与车辆分级控制框架示意图;
41.图2为本发明提供的动车组列车的机车与车辆一体化控制框架示意图;
42.图3为本发明提供的动车组列车控制方法的流程图;
43.图4为本发明的动车组列车控制方法在实际应用中的流程图。
具体实施方式
44.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
45.本发明的目的是提供一种动车组列车控制方法、系统、设备及介质,以解决现有技术中的对动车组列车的控制方法导致列车能耗大的问题。
46.目前动车组列车在自动驾驶模式时,ato系统根据列车的给定运行时分、车辆参数、线路条件等计算推荐速度曲线,然后控制器利用pid控制算法输出列车控制指令,车辆根据ato输出的控制指令,计算各个动力单元的牵引/控制指令,最后实现对列车的牵引/制动控制,如图1所示。本发明提出动车组列车与车辆一体化控制框架,如图2所示,首先ato系统计算推荐速度曲线,ato系统中的一体化控制模块根据推荐速度直接计算多动力单元的牵引/制动指令,实现对列车的控制。
47.然后在上述动车组列车与车辆一体化控制框架中,提出一种面向动车组列车与车辆一体化的轨迹跟踪控制模型(动车组列车控制方法),包括考虑各动力单元执行器饱和、车钩力限制、控制变量变化率等实际约束,构建动车组列车轨迹跟踪控制模型;设计优化目标,预测未来有限时域(设定时间范围)内列车的跟踪误差、舒适度以及能耗。其次,基于多点打靶法,将未来有限时域预测离散化为多步预测,得到列车的预测模型和离散的优化目标模型。然后,将动车组列车的轨迹跟踪控制问题转化为非线性规划问题。最后,通过设计sqp数值算法对上述非线性规划问题进行求解,得到未来多步的优化结果,并将第一步的优化结果直接反馈给各动力单元,基于四阶优格-库塔法求解列车动力学微分方程,实现高精度的列车轨迹跟踪控制。
48.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
49.图3为本发明提供的动车组列车控制方法的流程图,图4为本发明的动车组列车控制方法在实际应用中的流程图,如图3和图4所示,该方法包括:
50.步骤301:获取动车组列车单节车辆的受力情况、速度以及位置。
51.步骤302:以执行器饱和与车钩力限制为约束,以未来有限时域内列车跟踪误差、车钩力以及能耗为优化目标,根据所述受力情况、速度以及位置,构建动车组列车轨迹跟踪控制模型。
52.在实际应用中,基于模型预测控制框架(动车组列车与车辆一体化控制框架),构建动车组列车与车辆一体化轨迹跟踪控制模型(动车组列车轨迹跟踪控制模型)。
53.分析单节车厢受力情况,根据牛顿第二定律,以动车组列车单节车厢速度和位置为状态变量,表示为:
54.x(t)=[v1,

,vn,s1,

,sn]
t
,其中,v1,

,vn表示n节车厢的速度,s1,

,sn表示n节车厢的位置。
[0055]
每节车厢的牵引/制动力为控制变量,表示为:
[0056]
u(t)=[u1(t),

,un(t)]
t

[0057]
构建如下动车组列车多质点动力学模型:
[0058][0059]
构建如下执行器饱和约束数学模型:
[0060]
当第i节车厢为动车车厢时,执行器饱和约束数学模型(控制变量的约束模型)为:
[0061]
其中,为控制变量的最大值;为控制变量的最小值。
[0062]
当第i节车厢为拖车车厢时,执行器饱和约束数学模型为:
[0063][0064]
车钩力模型及约束:
[0065]fin,i
=ki(s
i-s
i+1-l0)+di(v
i-v
i+1
)。
[0066][0067]
其中,l0表示车钩原长,ki,di分别表示车钩的弹性系数和阻尼系数。
[0068]
以未来有限时域内列车跟踪误差、车钩力、能耗为优化目标构建动车组列车轨迹跟踪控制模型:
[0069]
[0070]
其中,kv,kf,ke分别表示优化目标中列车跟踪误差、车钩力和能耗的权重因子,u
i2
为能耗。
[0071]
步骤303:利用所述动车组列车轨迹跟踪控制模型对设定时间范围内的动车组列车跟踪误差、车钩力以及能耗进行预测,得到第一预测结果。第一预测结果为设定时间范围内的预测跟踪误差、预测车钩力和预测能耗。
[0072]
步骤304:根据所述第一预测结果,构建离散的优化目标模型。
[0073]
进一步地,所述根据所述第一预测结果,构建离散的优化目标模型,具体包括:
[0074]
基于多点打靶法,以设定预测步长将所述第一预测结果离散化为多步第二预测结果。
[0075]
根据多步所述第二预测结果,构建离散的优化目标模型。
[0076]
在实际应用中,考虑未来有限时域内动车组列车轨迹跟踪控制效果,基于多点打靶法,将未来有限时域预测离散化为多步预测,构建动车组列车预测模型和离散的优化目标模型。
[0077]
将未来有限时域[t0,tf]平均分为n份,并假设在每一份的时间区间内控制变量保不变,表示为:
[0078][0079]
其中,t0表示优化开始时刻,tf表示优化结束时刻;k表示第k步预测;δ表示预测步长(设定预测步长)。
[0080]
根据预测步长内控制变量以及车厢的状态变量,构建列车状态预测模型,表示为:
[0081][0082]
将设定时间范围内的预测跟踪误差、预测车钩力和预测能耗离散为n步,构建离散的优化目标模型,表示为:
[0083][0084]
步骤305:获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果。所述优化结果为优化后的车头/车辆位置和优化后的车头/车辆速度。
[0085]
进一步地,所述步骤305,具体包括:
[0086]
利用所述离散的优化目标模型将所述动车组列车的运行轨迹转化为非线性规划问题。
[0087]
利用序列二次规划算法,对所述非线性规划问题进行求解,得到优化结果。
[0088]
步骤306:将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头/车辆的位置和速度。
[0089]
进一步地,所述步骤306,具体包括:
[0090]
以所述设定预测步长,根据所述优化结果,控制车头的动力单元和各车辆的动力单元输出的牵引力/制动力,调整动力组列车的车头/车辆的位置和速度。
[0091]
所述步骤306,之后还包括:
[0092]
判断动车组列车运行的当前时刻是否大于或等于设定时刻。
[0093]
若所述动车组列车运行的当前时刻大于或等于设定时刻,则控制结束。
[0094]
若所述动车组列车运行的当前时刻小于设定时刻,则返回“步骤301”。根据列车运行时间与规定运行时间,判断是否继续进行对动车组列车的轨迹跟踪控制进行优化。
[0095]
在实际应用中,根据列车状态预测模型以及离散的优化目标模型,将动车组列车轨迹跟踪控制问题(动车组列车的运行轨迹)转化为非线性规划问题,表示为:
[0096][0097]
其中,q
dis
(u)表示非线性目标函数;u表示设定时间范围内的所有控制变量;r表示控制变量u的定义域;gj(u)表示控制变量u的不等式约束;l表示控制变量约束条件的个数。设计sqp算法(序列二次规划算法)对该非线性规划问题进行求解,得到未来n步优化结果。
[0098]
根据每步的预测步长,将第一步的优化结果反馈给各动力单元,基于四阶优格-库塔法求解列车动力学微分方程,实现高精度的列车轨迹跟踪控制。
[0099]
列车动力学微分方程表示为:
[0100][0101]
列车在tk时刻的状态为x(k),第一步优化结果反馈给各动力单元后,利用列车状态预测模型,预测列车在t
k+1
时刻的状态,表示为:
[0102][0103]
列车运行到规定时间(设定时刻)t前,若t
k+1
≥t,重复步骤302到步骤306,直到列车运行到规定时间。
[0104]
与现有技术相比,本发明具有如下优点:
[0105]
1、本发明动车组列车控制方法,利用动车组列车的机车与车辆一体化控制框架代替了传统ato中列车与车辆分级控制的结构,使各动力单元的牵引/制动力分配更加合理。
[0106]
2、实现了未来有限时域内的多目标优化,降低了列车运行能耗,提高了列车运行稳定性。
[0107]
3、使用四阶优格-库塔法求解列车动力学微分方程,使列车跟踪的精度更高。
[0108]
实施例二
[0109]
为了执行上述实施例一对应的方法,以实现相应的功能和技术效果,下面提供一种动车组列车控制系统,包括:
[0110]
数据获取模块,用于获取动车组列车单节车辆的受力情况、速度以及位置。
[0111]
轨迹跟踪控制模型构建模块,用于以执行器饱和与车钩力限制为约束,以未来有限时域内列车跟踪误差、车钩力以及能耗为优化目标,根据所述受力情况、速度以及位置,构建动车组列车轨迹跟踪控制模型。
[0112]
预测模块,用于利用所述动车组列车轨迹跟踪控制模型对设定时间范围内的动车组列车跟踪误差、车钩力以及能耗进行预测,得到第一预测结果。
[0113]
优化目标模型构建模块,用于根据所述第一预测结果,构建离散的优化目标模型。
[0114]
优化模块,用于获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果。所述优化结果为优化后的车头/车辆位置和优化后的车头/车辆速度。
[0115]
反馈模块,用于将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头/车辆的位置和速度。
[0116]
实施例三
[0117]
本发明还提供了一种电子设备,包括:存储器及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行实施例一的动车组列车控制方法。
[0118]
实施例四
[0119]
本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现实施例一的动车组列车控制方法。
[0120]
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
[0121]
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

技术特征:


1.一种动车组列车控制方法,其特征在于,包括:获取动车组列车单节车辆的受力情况、速度以及位置;以执行器饱和与车钩力限制为约束,以未来有限时域内列车跟踪误差、车钩力以及能耗为优化目标,根据所述受力情况、速度以及位置,构建动车组列车轨迹跟踪控制模型;利用所述动车组列车轨迹跟踪控制模型对设定时间范围内的动车组列车跟踪误差、车钩力以及能耗进行预测,得到第一预测结果;根据所述第一预测结果,构建离散的优化目标模型;获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果;所述优化结果为优化后的车头/车辆位置和优化后的车头/车辆速度;将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头/车辆的位置和速度。2.根据权利要求1所述的动车组列车控制方法,其特征在于,所述根据所述第一预测结果,构建离散的优化目标模型,具体包括:基于多点打靶法,以设定预测步长将所述第一预测结果离散化为多步第二预测结果;根据多步所述第二预测结果,构建离散的优化目标模型。3.根据权利要求1所述的动车组列车控制方法,其特征在于,所述获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果,具体包括:利用所述离散的优化目标模型将所述动车组列车的运行轨迹转化为非线性规划问题;利用序列二次规划算法,对所述非线性规划问题进行求解,得到优化结果。4.根据权利要求2所述的动车组列车控制方法,其特征在于,所述将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头/车辆的位置和速度,具体包括:以所述设定预测步长,根据所述优化结果,控制车头的动力单元和各车辆的动力单元。5.根据权利要求1所述的动车组列车控制方法,其特征在于,还包括:判断动车组列车运行的当前时刻是否大于或等于设定时刻;若所述动车组列车运行的当前时刻大于或等于设定时刻,则控制结束;若所述动车组列车运行的当前时刻小于设定时刻,则返回“获取动车组列车每节车厢的受力情况、速度以及位置”的步骤。6.一种动车组列车控制系统,其特征在于,包括:数据获取模块,用于获取动车组列车单节车辆的受力情况、速度以及位置;轨迹跟踪控制模型构建模块,用于以执行器饱和与车钩力限制为约束,以未来有限时域内列车跟踪误差、车钩力以及能耗为优化目标,根据所述受力情况、速度以及位置,构建动车组列车轨迹跟踪控制模型;预测模块,用于利用所述动车组列车轨迹跟踪控制模型对设定时间范围内的动车组列车跟踪误差、车钩力以及能耗进行预测,得到第一预测结果;优化目标模型构建模块,用于根据所述第一预测结果,构建离散的优化目标模型;优化模块,用于获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果;所述优化结果为优化后的车头/车辆位置和
优化后的车头/车辆速度;反馈模块,用于将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头/车辆的位置和速度。7.一种电子设备,其特征在于,包括:存储器及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行权利要求1-5任一项所述的动车组列车控制方法。8.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-5任一项所述的动车组列车控制方法。

技术总结


本发明涉及一种动车组列车控制方法、系统、电子设备及存储介质,属于列车运行控制领域。该方法包括:获取动车组列车每节车厢的受力情况、速度以及位置;根据所述受力情况、速度以及位置,构建动车组列车轨迹跟踪控制模型;利用所述动车组列车轨迹跟踪控制模型对设定时间范围内的动车组列车跟踪误差、车钩力以及能耗进行预测,得到第一预测结果;根据所述第一预测结果,构建离散的优化目标模型;获取动车组列车的运行轨迹,利用所述离散的优化目标模型,对所述动车组列车的运行轨迹进行优化,得到优化结果;将所述优化结果反馈至动车组列车的各动力单元,调整动力组列车的车头和车辆的位置和速度。本发明降低了列车运行的能耗。本发明降低了列车运行的能耗。本发明降低了列车运行的能耗。


技术研发人员:

宿帅 曹源 张淼 唐涛 吕继东 张梓轩 王迪 穆俊斌

受保护的技术使用者:

北京交通大学

技术研发日:

2022.10.27

技术公布日:

2022/12/12

本文发布于:2022-12-18 08:44:35,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/2/35766.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:车组   列车   所述   车钩
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图