1.本发明涉及
纳米涂覆的基于浆(pulp,纸浆)的
基材的制造方法。
背景技术:
2.包括大量微纤化
纤维素(mfc)的膜和阻隔纸是本领域知晓的。取决于其如何制造,膜可具有特别有利的强度和/或阻隔性质,同时是生物可降解的且可再生的。包括mfc的膜例如在包装材料制造中使用并且可层压或以其它方式提供在纸或纸板材料的表面上。
3.已知的是,水或湿气可负面地影响mfc膜的阻隔性质。已经测试各种化学和机械解决方案例如用热塑性聚合物的层压。
4.需要用于制备经表面处理的基于浆的基材的有效方法,所述经表面处理的基材还提供阻隔和强度性质。
5.另外,如果这样的经表面处理的基材能够为可堆肥的和/或可容易再循环的和/或可再制浆的并且基本上不含塑料,则这将为期望的。然而,当在基于纤维素的基材上提供
涂层和表面处理时,困难可出现。若将分散体或基于水的溶液施加到薄幅材或基材上,幅材分解或尺寸稳定性问题可发生。这是由于水吸着和渗透到亲水基材中所致,影响原纤维、纤维和添加剂之间的氢键。
6.一种解决方案为增加施加的溶液的固体,尽管这经常导致较高的涂层重量和较高的溶液粘度。另一方面,高粘度产生较高的在基材上的应力并且通常产生较高的涂层重量。
7.由于这些原因,提供足够的阻隔性质是困难的,尤其是以低的涂层重量。
8.因此,铝箔或成膜聚合物例如胶乳或热塑性聚合物被用于这些意图并且通常提供足够的在油或油脂和/或香味或气体例如氧气的渗透或扩散方面的性质。铝或成膜聚合物还提供增强的水蒸气阻隔,这对于在高相对湿度条件下的阻隔和包装功能性或减少被包装的液体产品的蒸发是重要的。
9.然而,使用铝箔的一个问题是,其导致环境挑战、在再循环过程中可成问题并且取决于用量可导致不可堆肥的包装材料。因此,期望使用尽可能少量的铝。然而,同时维持包装材料的阻隔性质是必要的。
10.提供可为有机或无机的纳米涂层例如陶瓷或金属纳米涂层是本领域中知晓的。纳米涂层非常薄,例如厚度为约0.1nm至约100nm。例如,金属化表面使用非常少量的金属或金属氧化物例如铝或tio2、al2o3、mgo或zno。例如,原子层沉积(ald)、动态复合沉积(dcd)、化学气相沉积(cvd)、例如等离子体cvd、物理气相沉积(pvd)和金属等离子体-沉积为适合在表面上提供少量金属的技术。然而,如下仍是必要的:包装材料当提供有纳米涂层(例如金属化的)时可维持阻隔性质并且是足够抗裂的。
11.成膜聚合物例如胶乳和热塑性基于化石的聚合物的一个问题是,获得的包装材料典型地不被认为是单材料并且再循环问题可出现。很多成膜聚合物的另外问题是,成膜聚合物经常以含水溶液或分散体的形式提供。溶液或分散体的水含量可破坏纸基材。亲水纤维素材料典型地提供对氧气的阻隔性质但对水和水蒸气敏感。
12.在使用纳米涂层时的另外问题是,这样的涂层不仅对于涂层施加于其上的基材的粗糙度而且对于在这样的表面上可存在的灰尘、污染物和杂物是敏感的。这样的灰尘、污染物和杂物可导致纳米涂层中的针孔。
13.因此,需要调整基材使得可施加非常少量的纳米涂层而不劣化阻隔性质。
技术实现要素:
14.已经意外发现,前述问题的一些或全部可通过提供制造具有水蒸气阻隔性质的纳米涂覆的基材的改进方法而解决。
15.已经意外发现,通过使用如下方法能够实现有利的阻隔性质、特别是水蒸气阻隔性质:其中,提供包含浆的悬浮体,所述浆具有至少70
°
的肖伯尔瑞格勒(schopper riegler)值,使用悬浮体形成湿幅材,之后脱水和/或干燥,之后降低基材的表面粗糙度,之后提供纳米涂层使得在基材上提供具有在0.1nm至100nm范围内的厚度的纳米涂层。
16.因此,本发明涉及纳米涂覆的基材的制造方法,包括如下步骤:
17.a)提供包含浆的悬浮体,所述浆具有至少70
°
的肖伯尔瑞格勒值;
18.b)使用步骤a)的悬浮体形成湿幅材;
19.c)将湿幅材脱水和/或干燥以形成基材;
20.d)降低基材的表面粗糙度;
21.e)在步骤d)中获得的基材的表面上提供纳米涂层,使得在基材上提供具有在0.1nm至100nm范围内的厚度的纳米涂层。
具体实施方式
22.步骤a)中使用的悬浮体包括浆,所述浆具有多于70sr
°
、例如70至95sr
°
或75至85sr
°
的肖伯尔瑞格勒值(sr
°
)。肖伯尔-瑞格勒值可通过en iso5267-1中定义的标准方法测定。
23.悬浮体中的浆可使用本领域中知晓的方法制造,并且可为例如为了实现期望的肖伯尔瑞格勒值而已经精制的牛皮纸浆。浆还可包括微纤化纤维素(mfc)。浆可为基本上未精制的浆与高度精制的浆和/或mfc混合的混合物。悬浮体除浆外还可包括在造纸中典型地使用的添加剂。
24.步骤a)中的悬浮体可包含不同类型的纤维例如微纤化纤维素和一定量的其它类型的纤维例如牛皮纸(kraft)纤维、细料、增强纤维、合成纤维、溶解浆、tmp或ctmp、pgw等的混合物。
25.步骤a)中的悬浮体还可包括其它方法或功能添加剂,例如填料、颜料、湿强度化学品、助留化学品、交联剂、软化剂或增塑剂、粘着底漆、润湿剂、杀生物剂、光学染料、着剂、荧光增白剂、消泡化学品、疏水化化学品例如akd、asa、蜡、树脂等。
26.湿幅材可例如通过湿法铺设或流延成形方法而形成。对于湿法铺设形成,方法可在造纸机例如长网造纸机(fourdrinier)或其它成形类型例如双网成形装置(twin-former)或混杂成形装置(hybrid former)中实施。幅材可为用一个或若干个流浆箱制成的单或多层幅材或者单或多片层幅材。
27.微纤化纤维素优选具有多于70sr
°
、或多于75sr
°
、或多于80sr
°
的肖伯尔瑞格勒值
(sr
°
)。微纤化纤维素当根据氮吸附(bet)方法对溶剂交换和冷冻干燥的样品测定时具有至少30m2/g或更优选地多于60m2/g或最优选地》90m2/g的表面积。
28.悬浮体的微纤化纤维素含量可在15至99.9重量-%的范围内,基于悬浮体的固体重量。在一个实施方式中,悬浮体的微纤化纤维素含量可在30-90重量-%的范围内、在35-80重量-%的范围内、或在40-60重量-%的范围内。
29.湿幅材可例如通过湿法铺设和流延成形方法制备。在湿法铺设方法中,制备悬浮体并将其提供至多孔丝网。脱水通过丝网织物发生并且任选地还在后续的压榨部和干燥部中发生。干燥通常使用对流(圆柱体、金属带)或辐射干燥(ir)或热空气完成。典型的湿法铺设为例如在造纸中使用的长网造纸机成形装置。在流延成形方法中,将湿幅材形成例如在聚合物或金属带上并且例如经由使用各种已知技术的蒸发主要在一个方向上实施后续的初始脱水。
30.实施幅材的脱水和/或干燥,使得在脱水和/或干燥结束时的水分含量优选地小于50wt-%、更优选地小于20wt-%、最优选地小于10wt-%、甚至更优选地小于5wt-%。
31.步骤c)中获得的基材在提供有纳米涂层之前的定量(基重)优选地小于100g/m2、更优选地小于70g/m2和最优选地小于35g/m2。获得的基材在提供有纳米涂层之前的定量优选为至少10g/m2。
32.优选地,基材不含氟化学品。
33.可任选地对步骤c)中获得的基材在步骤d)之前通过例如压延进行表面处理。步骤d)可在不同于步骤c)的机器和/或位置的机器和/或位置处实施。
34.步骤c)中获得的基材,即在基材的表面上提供纳米涂层之前,优选具有阻隔性质,使得基材的格利希尔(gurley hill)孔隙率值高于4000s/100ml、优选地高于6000s/100ml和最优选地高于10 000s/100ml。格利希尔值可使用本领域中知晓的方法(iso 5636-5)测定。
35.步骤c)中获得的基材优选地包括小于10针孔/m2、优选地小于8针孔/m2和更优选地小于2针孔/m2,如根据标准en13676:2001测量的。
36.降低基材的表面粗糙度的步骤包括以下处理的至少两个:电晕处理、火焰处理、等离子体处理和/或除尘。除尘可例如通过使用加压的洁净空气或气体或使用空气电离而实施或者可为静电除去。优选地,降低基材的表面粗糙度的步骤包括以下处理的至少两个:电晕处理、火焰处理和/或等离子体处理。优选地,施加至少两个单独的处理,其中至少两个处理可相同或不同。例如,在本发明的一个实施方式中实施两个单独的火焰处理,即实施基材的第一火焰处理,之后进行第二火焰处理。在一个实施方式中,首先实施火焰处理实施,之后进行等离子体处理。在其它优选实施方式中,首先实施静电除去,之后进行火焰处理。各处理是使用本领域中知晓的方法实施的。降低基材的表面粗糙度的步骤在基材的一侧或两侧上实施。
37.降低基材的表面粗糙度的步骤制备用于后续的纳米涂覆(涂层)步骤的基材并且使得能够施加和使用非常薄的纳米涂层。更具体地,降低基材的表面粗糙度的步骤降低纳米级表面粗糙度。
38.基材的纳米级粗糙度可使用本领域中知晓的方法测定。例如,粗糙度可通过原子力显微术或通过使用扫描电子显微术而测定。
39.根据本发明的基材的纳米级表面粗糙度是低的,即表面在纳米级上非常光滑。粗糙度通常描述为密集间隔的不规则性。纳米级粗糙度可通过原子力显微术测量。例如,在步骤d)中获得的基材(即在已经施加任何纳米涂层之前)的区域(area,面积)、优选地在5μm x 5μm和100μm x 100μm之间的区域可使用原子力显微术观察。可测定表面结构,即峰和谷,并且可计算均方根(rms)粗糙度或峰-对-谷高度参数,量化纳米级表面粗糙度(peltonen j.等人langmuir,2004,20,9428-9431)。对于根据本发明的在步骤e)中获得的基材,因此测定的rms通常在100nm以下、优选地在80nm以下。
40.纳米涂层非常薄,厚度为0.1nm至约100nm。纳米涂层可为有机或无机的,例如陶瓷或金属纳米涂层。例如,金属化表面使用非常少量的金属或金属氧化物,例如铝或tio2、al2o3、mgo或zno。在一个实施方式中,纳米涂层包括铝。
41.提供纳米涂层的步骤(方法的步骤e))可使用例如原子层沉积(ald)、动态复合沉积(dcd)、化学气相沉积(cvd)、例如等离子体cvd、物理气相沉积(pvd)和金属等离子体-沉积进行。纳米涂覆优选地通过原子层沉积(ald)实施。纳米涂覆可为内联(in-line,在线)过程,即在与步骤a)至d)相同的设备中和/或在与步骤a)至d)相同的位置处实施。可替代地,纳米涂覆可单独实施,即在单独设备中和/或在不同于步骤a)至d)的另外位置中。纳米涂层可在基材的一侧或两侧上实施。
42.将纳米涂层直接提供在步骤d)中获得的基材上,即在步骤d)中获得的基材和纳米涂层之间未提供预涂层。
43.在提供纳米涂层之后,可任选地将以粘合剂、清漆或连接层形式的保护涂层施加在纳米涂层上。粘合剂的实例包括微纤化纤维素、sb胶乳、sa胶乳、pvac胶乳、淀粉、羧甲基纤维素、聚乙烯醇等。保护涂层中使用的粘合剂的量典型地为1-40g/m2、优选地1-20g/m2或1-10g/m2。这样的保护涂层可使用本领域中知晓的方法提供。例如,保护涂层可用例如接触或非接触沉积技术以一层或两层施加。所述保护涂层可进一步提供例如热密封性、液体和/或油脂耐受性、印刷表面和耐摩擦性。
44.根据本发明的进一步实施方式,提供包括根据本发明制备的纳米涂覆的基材的层压体。这样的层压体可包括热塑性聚合物(基于化石或由可再生资源制成)层,例如聚乙烯、聚乙烯醇、evoh、淀粉(包括改性淀粉)、纤维素衍生物(甲基纤维素、羟丙基纤维素等)、半纤维素、蛋白质、苯乙烯/丁二烯、苯乙烯/丙烯酸酯、丙烯酰基/乙烯基乙酸酯(acryl/vinylacetate)、聚丙烯、聚对苯二甲酸乙二醇酯、聚呋喃乙二醇酯、pvdc、pcl、phb、pha、pga和聚乳酸的任一种。热塑性聚合物层可例如通过挤出涂覆、膜涂覆或分散涂覆提供。该层压结构可提供甚至更优异的阻隔性质并且可为生物可降解的和/或可堆肥的和/或可再制浆的。在一个实施方式中,根据本发明的纳米涂覆的基材可在具有或不具有连接层的情况下存在于两个涂层之间,例如两个聚乙烯层之间。在一个实施方式中,根据本发明的纳米涂覆的基材可在具有或不具有在纳米涂层上施加的保护涂层的情况下层压在纸板上。根据本发明的一个实施方式,聚乙烯可为技术人员可容易选择的高密度聚乙烯和低密度聚乙烯或其混合物或改性物的任一种。根据进一步的实施方式,提供根据本发明的纳米涂覆的基材或层压体,其中所述纳米涂覆的基材或所述层压体施加至纸产品和板的任一者的表面。纳米涂覆的基材或层压体也可为柔性包装材料例如自立袋或包的部分。纳米涂覆的基材或层压体可引入到任意类型的包装例如盒、包、缠绕膜、杯、容器、托盘、瓶等中。
45.本发明的一个实施方式为根据本发明方法制成的纳米涂覆的基材。
46.纳米涂覆的基材的以10-50g/m2克重在50% rh、23℃下测量的otr(氧气透过率)值(在标准条件下测量)优选地《5cc/(m2*天)、优选地《3、更优选地《2和最优选地《1。
47.纳米涂覆的基材根据标准iso 15106-2/astm f1249在50%相对湿度和23℃下测定的水蒸气透过率小于5g/m2/天、更优选地小于3g/m2/天。
48.纳米涂覆的基材的厚度可取决于所需性质而选择。厚度可例如为10-100μm,例如20-50或30-40μm,具有例如10-100g/m2、例如20-30g/m2的克重。纳米涂覆的基材典型地具有非常好的阻隔性质(例如对气体、脂肪或油脂、香味、光等)。
49.本发明的进一步的实施方式为包括根据本发明方法制成的纳米涂覆的基材的产品。典型地,根据本发明的纳米涂覆的基材为可再制浆的。
50.本发明的一个实施方式为包括根据本发明方法制造的纳米涂覆的基材的柔性包装。本发明进一步的实施方式为包括根据本发明的纳米涂覆的基材的刚性包装。
51.微纤化纤维素(mfc)在专利申请的上下文中应当意指至少一个维度小于100nm的纳米级纤维素颗粒纤维或原纤维。mfc包括部分或全部原纤化的纤维素或木质纤维素纤维。释放的原纤维具有小于100nm的直径,而实际的原纤维直径或粒度分布和/或长宽比(长度/宽度)取决于来源和制造方法。
52.最小的原纤维称为基本原纤维并具有大约2-4nm的直径(参见例如chinga-carrasco,g.,cellulose fibres,nanofibril and microfibril,:the morphological sequence of mfc components from a plant physiology和fibre technology point of view,nanoscale research letters 2011,6:417),而如下是常见:基本原纤维的聚集形式(也定义为微原纤维(fengel,d.,ultrastructural behavior of cell wall polysaccharides,tappi j.,march 1970,vol 53,no.3.))为当例如通过使用扩展精制工艺或压降崩解工艺生产mfc时获得的主要产物。取决于来源和制造工艺,原纤维长度可从大约1微米至多于10微米变化。粗mfc等级可包含相当大分数的原纤化的纤维,即从管胞(纤维素纤维)突出的原纤维,以及一定量的从管胞(纤维素纤维)释放的原纤维。
53.mfc存在不同的首字母缩略词例如纤维素微原纤维、原纤化的纤维素、纳米原纤化的纤维素、原纤维聚集体、纳米级纤维素原纤维、纤维素纳米纤维、纤维素纳米原纤维、纤维素微纤维、纤维素原纤维、微原纤状纤维素、微原纤维聚集体和纤维素微原纤维聚集体。mfc还可以各种物理或物理-化学性质例如大的表面积或其当分散于水中时以低固体(1-5wt%)形成凝胶状材料的能力为特征。纤维素纤维优选地被原纤化至这样的程度:微纤化纤维素当根据氮吸附(bet)方法对溶剂交换和冷冻干燥的样品测定时具有至少30m2/g或更优选地多于60m2/g或最优选地》90m2/g的表面积。
54.存在用于生产mfc的各种方法,例如单遍或多遍精制、在预水解后精制或者原纤维的高剪切崩解或释放。为了使mfc制造既节能又可持续,通常需要一个或若干个预处理步骤。因此,可酶促地或化学地预处理所供应的浆的纤维素纤维,以例如减少半纤维素或木质素的量。可在原纤化之前将纤维素纤维进行化学改性,其中纤维素分子包含除原始纤维素中发现的官能团之外的(或更多的)官能团。这样的基团尤其包括羧甲基(cm)、醛和/或羧基基团(通过n-氧基介导的氧化例如"tempo"获得的纤维素)或季铵(阳离子纤维素)。在上述方法之一中改性或氧化之后,更容易将纤维崩解为mfc或纳米原纤状尺寸原纤维。
55.纳米原纤状纤维素可包含一些半纤维素;量取决于植物来源。预处理的纤维例如水解的、预溶胀的或氧化的纤维素原材料的机械崩解通过适合的设备例如精制机、研磨机、均化机、胶化器(colloider)、摩擦研磨机、超声发生器、流化器例如微流化器、大型流化器或流化器型均化机实施。取决于mfc制造方法,产物还可包含细料或纳米晶体纤维素或例如在木纤维中或在造纸过程中存在的其它化学品。产物还可包含不同量的尚未有效原纤化的微米尺寸纤维颗粒。
56.mfc由来自硬木或软木纤维两者的木纤维素纤维制成。其也可由微生物来源、农业纤维例如麦秆浆、竹子、甘蔗渣或其它非木纤维来源制成。其优选地由包括来自原生纤维的浆(例如机械、化学和/或热机械浆)的浆制成。其也可由损纸(broke,废纸)或再生纸制成。
57.鉴于以上本发明的详细描述,其它修改和变化对于本领域技术人员将变为显然的。然而,应当明晰,可实施这样的其它修改和变化而不偏离本发明的精神和范围。
技术特征:
1.纳米涂覆的基材的制造方法,包括如下步骤:a)提供包含浆的悬浮体,所述浆具有至少70
°
的肖伯尔瑞格勒值;b)使用步骤a)的悬浮体形成湿幅材;c)将湿幅材脱水和/或干燥以形成基材;d)降低基材的表面粗糙度;e)在步骤d)中获得的基材的表面上提供纳米涂层,使得在基材上提供具有在0.1nm至100nm范围内的厚度的纳米涂层。2.根据权利要求1所述的方法,其中在步骤d)中实施至少两个选自电晕处理、火焰处理、等离子体处理和除尘的处理。3.根据权利要求2所述的方法,其中在步骤d)中实施至少两个单独的火焰处理。4.根据权利要求1-3任一项的方法,其中在步骤d)之前压延在步骤c)中获得的基材。5.根据权利要求1-4任一项的方法,其中步骤a)中的悬浮体包括微纤化纤维素。6.根据权利要求5所述的方法,其中步骤a)中的悬浮体的微纤化纤维素的含量为至少60重量-%,基于悬浮体的固体的重量。7.根据权利要求1-6任一项的方法,其中在步骤e)中施加的纳米涂层包括铝。8.根据权利要求1-7任一项的方法,其中步骤e)通过原子层沉积实施。9.纳米涂覆的基材,能够根据如权利要求1-8任一项所述的方法获得。10.包装材料,包括根据权利要求9的纳米涂覆的基材。
技术总结
本发明涉及纳米涂覆的基于浆的基材的制造方法,包括如下步骤:a)提供包含浆的悬浮体,所述浆具有至少70
技术研发人员:
K.巴克福克 I.海斯卡宁 K.莱迪凯宁
受保护的技术使用者:
斯道拉恩索公司
技术研发日:
2021.05.06
技术公布日:
2022/12/16