解析:脂质纳米颗粒(LNP)的设计流程及制备

阅读: 评论:0

解析:脂质纳米颗粒(LNP)的设计流程及制备
mRNA的COVID-19疫苗的成功,离不开几十年来对脂质载体给药系统的研究。该技术已被用于向目标细胞和组织传递各种生物活性分子,如小分子抑制剂和疫苗成分。脂质载体技术与传统的药物传递方式相比有很多优势,包括增加药物的稳定性、生物利用度和分布。 
脂质纳米颗粒(Lipid nanoparticles,LNPs)是脂质载体给药系统中的重要技术之一,已成为基于寡核苷酸药物的一个重要进展。封装在脂质纳米颗粒中的寡核苷酸在传递过程中受到保护,不受酶降解,并有效地传递到细胞中,在细胞中载体颗粒中的内容物被释放并被翻译为蛋白。鉴于LNPs对基于寡核苷酸的具有巨大的革命性潜力,新一波研究人员正在追求基于LNPs更有针对性的应用。
如何设计一个脂质纳米颗粒的药物载体?
在选择脂类及其如何配制成LNPs时,应考虑以下几个因素。綦江洪水
1.脂质摩尔比决定了颗粒的脂质组成,并影响其大小、多分散性和功效。建议参考此前已开发的类似应用,从相关文献入手,以确定脂质摩尔比。下表展示了FDA批准的LNPs药物的脂
质摩尔比:
Patisiran
BNT162b2
mRNA-1273
内容药物类型
siRNA
mRNA
mRNA
Ionizable Cationic Lipid(可电离阳离子脂质体)
DLin-MC3-DMA
ALC-0315
SM-102
Neutral Phospholipid(中性磷脂)
1,2-DSPC
1,2-DSPC
1,2-DSPC
embedding
Sterol Lipids(固醇脂)
Cholesterol
Cholesterol
Cholesterol
PEGylated Lipids(PEG化磷脂)
DMG-PEG(2000)
ALC-0159
DMG-PEG(2000)
脂质摩尔比*
50:10:38.5:1.5
46.3:9.4:42.7:1.6
50:10:38.5:1.5
FDA批准的LNPs药物中的脂质摩尔比(*Ionizable cationic lipid : neutral phospholipid : cholesterol : PEGylated lipid)
(相关产品链接请见文末)
中国民生发展报告2014
2.脂质与寡核苷酸的重量比自然之道教学实录影响包封效率。大多数LNPs的配方为脂质:寡核苷酸重量比为10:1。
3.可电离脂质氮:寡核苷酸磷酸(N:P)摩尔比表示可电离阳离子脂质阳离子叔胺与寡核苷酸主链阴离子磷酸基团之间的电荷平衡。这一性质是电离阳离子脂质与寡核苷酸络合的基础。LNP的N:P比率通常在6左右。 
4.脂酸解离常数(脂质pKa)是脂质在相同浓度下的电离和非电离形态的pH值。脂质pKa影响LNP的包封效率、疗效、传递和毒性。 对于RNA传递,脂质pKa一般在6-7之间。已经确定了不同给药途径的具体范围。静脉给药和肌肉给药的最佳脂质pKa范围分别为6.2-6.6和6.6-6.9。 
5.水缓冲液的三个重要参数是它的组成、离子强度和pH值。缓冲液稳定溶液中的寡核苷酸,可电离的阳离子脂质在酸性水缓冲液中混合后变成质子化和正电荷。LNP制剂中常用的缓冲液为25-50 mM的醋酸钠或柠檬酸钠,pH为4-5。LNPs被透析到中性缓冲液中,如pH 7.4的PBS中储存和使用。 
6.颗粒大小改变给药颗粒的药代动力学。 更小的颗粒通常有更长的循环半衰期,因为它们逃避单核吞噬细胞机制的清除。小于100nm的颗粒可轻易通过有孔的内皮细胞穿透靶组织。颗粒大小取决于制备方法。根据LNP制备方法的不同,可以使用挤压来实现更小、更均匀的颗粒尺寸。 
7.两种最常用的给药途径是静脉注射和肌肉注射。 静脉给药的LNP主要分布在肝脏和脾脏,但也分布在肺部。带净正电荷、中性电荷和负电荷的LNPs可分别靶向肺、肝和脾。在配方中加入胆固醇或聚乙二醇化脂质,以及增加LNP的大小,增加了脾脏的分布。肌肉注射通常用于疫苗,因为它有助于淋巴结靶向和激活免疫反应。当使用疫苗时,抗原提呈细胞(APCs),如巨噬细胞和树突状细胞,被招募到交付点,在那里它们可以遇到疫苗抗原。 然后它们转移到淋巴结,刺激T细胞反应。值得注意的是,针对某一特定给药途径进行优化的制剂通常不适用于其他给药途径。
8.制备方法决定了LNPs的性质,包括尺寸、均匀性和包封效率。 在选择制备方法时,还应考虑成本、可扩展性、可再现性和时间承诺。
LNPs的制备步骤
天和众邦
本文给出了一系列用于生产LNP的大致流程,包括LNP生命周期的整个范围,从LNP从实验台上的准备开始,到如何使用LNP,以及在体外/体内实验中使用LNP时的预期结果。
1.LNP的准备
在开始之前,确保所有的供应品、试剂和工作环境是RNase-free的。siRNA和mRNA在化学上对RNase不稳定,RNase是降解RNA寡核苷酸的酶。图1总结了LNP形成的步骤。
LNP制备工作流程
2.混合
LNPs的制备方法是将乙醇脂混合物与含有寡核苷酸的酸性水缓冲液混合(如下图)。通常使用1:3的乙醇脂混合物与水缓冲液的比例。有几种方法适用于实验室规模的小体积LNP生产。
含寡核苷酸的LNP形成示意图
芮成钢专访
下文和下表对其中的四种混合方法进行了比较,这些方法适用于一系列从专业到基本的设备。
微流体混合设备:自动化微流体混合设备或微流控芯片是快速高效制备LNPs的方法。这些器件能够以高度可控、可重复的方式快速混合,从而获得均匀的LNPs和高封装效率。在这些装置中,乙醇脂混合物和寡核苷酸水溶液的单独流被迅速结合。脂质纳米颗粒形成时,两股溶液混合,并收集到一个单独的管中。可以通过改变流量比和总流量等参数来微调LNPs。
T型或y型混合器:这些混合器可以用普通和实惠的实验室材料组装。T型或y型接头可安装两个入口,连接到装有脂质混合物或寡核苷酸溶液的单独注射器,一个出口将LNPs引导到收集管中,进口流量可以控制注射泵。
乙醇注射:此方法适用于所有实验室。乙醇脂混合物和寡核苷酸水溶液的混合是在磁搅拌板的帮助下进行的。将乙醇脂混合物注入酸性寡核苷酸水溶液中,不断搅拌,继续搅拌30分钟。但这种方法可能产生更多不均匀的LNPs,包封效率较低,容易发生变化。
手工混合:这是乙醇注射的一种更简单的替代方法。 将乙醇脂混合物转移到酸性寡核苷酸水溶液中,通过快速移液混合15秒。 将混合物静置10分钟。 与乙醇注射法一样,手工混合LNPs得到的是包封效率较低的非均质LNPs,且结果多变。

本文发布于:2023-08-15 08:19:44,感谢您对本站的认可!

本文链接:https://patent.en369.cn/xueshu/361723.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:脂质   寡核苷酸   颗粒
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图