23a17型钐钴永磁材料微观分析的及案例库

阅读: 评论:0

摘要
2:17型钐钴永磁材料凭借其在居里温度、温度稳定性和抗腐蚀等方面的突出性能,在航空、航天、航海等强调工作环境在较高温度和恶劣场合的领域发挥着不可替代的作用。近年来随着国防军工行业的快速发展,对永磁材料的使用温度和温度稳定性提出了更为严苛的要求。磁体工艺条件的控制直接影响着材料微观形貌和成分的均匀性,进而对产品最终的磁性能产生至关重要的影响。本文正是针对材料生产工艺中的一致性问题,借助包括扫描电子显微镜、X射线能谱仪和X 射线荧光光谱仪等多种现代电子显微分析技术对钐钴合金的相关问题进行了深入研究和讨论,主要工作内容和成果如下。
(1)研究电子显微分析技术在钐钴永磁材料研究中的应用。利用扫描电镜的背散射成像和电子探针微区分析,明确了掺Gd钐钴和铒钴铸锭微观金相的分布情况和对应的微区成分变化;对比不同磨粉工艺得到粉末颗粒的微观形貌像,选择合适的工艺和粉体;观察不同时效时间试样金相图中析出相的分布情况,结合相关理论确定时效工艺的最佳时间。上述应用对该类材料粉末冶金工艺各个生产环节中的微观分析工作具有指导意义,奠定了后续工作的基础。
(2)研究磁体高温时磁性能下降的原因。根据材料不同的相变温度,设置多个温度试验,对比不同温度处理后磁体的物相结构和标准材料之间的差异,并借助热金相显微镜对材料进行实时的高温金相观察,明确了其金相随温度的变化规律,最后根据样品的微观形貌和析出相成分分析结果,结合相关理论解释了磁性能下降的原因。
(3)研究掺杂Er的低温度系数型钐钴永磁合金的成分测定问题。通过实际测量确定了合适的测试谱线和对应精确的衍射角从而削弱了谱线间相互干扰,采用粉末压片法配备不同Er含量的标准样品系列从而建立各元素的校正曲线,并通过标准曲线法消除了不同元素之间的吸收增强效应,建立了针对该类材料的X射线荧光光谱分析方法,同时结合理论计算和实际测量结果明确了实际工艺生产过程中引入的微量氧对分析结果造成的影响,最终实际测试结果表明本法的精密度和准确度满足一致性分析的需要,并且适用于工艺生产各个步骤得到的试样。
(4)设计开发稀土钴永磁体微观分析案例及图谱库。利用Access存储底层数据,在Visual Studio平台上开发了数据库软件,并将历年来相关分析得到的原始数据和典型案例报告添加至此数据库,实现了检索、查阅、修改和添加等功能,保证了这些珍贵实验资料的有限存储和安全访问,使得后续研究人员可以高效率的
借鉴这些研究成果。
上述工作丰富了钐钴永磁微观研究理论和成分分析方法,为材料进一步理论研究和工艺控制提供了依据和参考。
关键词:SmCo永磁,显微分析,XRF,数据库
ABSTRACT
In virtue of the high Curie temperature, excellent temperature stability and the outstanding corrosion resistance of the 2:17-type SmCo permanent magnet materials, it plays an irreplaceable role in the field of aerospace, spaceflight and navigation, which need the high temperature as the work condition. With the rapid development of national defense industry in recent years, the permanent magnet materials was faced with more stringent requirements in the aspect of working temperature and temperature stability. The controlling of process condition of the magnet directly affects the consistency of the microstructure and composition, which has a crucial impact on the magnetic performance of the final magnetic product. In response to the issues above, the scanning electron microscopy, X-ray energy dispersive spectroscopy and X-ray fluorescence were used to conduct the research related. The main content and achievement are as follows:
(1) The research on the electron microscopic analysis technology in application of SmCo permanent magnet materials. the backscattered electron imaging of the scanning electron microscopy and the X-ray energy dispersive spectroscopy were used to confirm the distribution and composition of metallographic phase; the appropriate milling process was selected based on the micro-morphology of the powder obtained by the diverse processes; the optimal time to aging process was cleared on the basis of distribution of the precipitation hardening of samples treated at different aging time comb
ined with the theory related. Those applications above had a guiding significance in the micro analysis of the various production processes, which laid a foundation for the follow-up work.
(2) The research on the cause of the degradation in magnetic properties at the high temperature. The experiments were set up according to the diverse phase transformation temperature, and the phase structure of the samples treated at different temperature were compared, then the magnet was placed in the high temperature metallurgical microscope to observe in real time. According to the results above, the change regularity of metallographic phase with the temperature was confirmed, and the reason of the degradation in magnetic properties at the high temperature was clarified combined the analysis results of microstructure and the composition of the precipitated phase with
related theory.
(3) The research on the component measuring method aiming at the low temperature coefficient 2:17-type SmCo permanent magnet with Er doped. The appropriate testing spectral lines among which there were weak mutual interference and the exact diffraction angle corresponded were determined by actual measurement, the standard samples with different content of Er were prepared
by pressed powder to create the calibration curves of different elements, and the absorption enhancement effect was eliminated by standard curve method to develop the X-ray fluorescence spectrum of the material. The effect of the trace oxygen brought in the actual production process on the analysis results plays a negligible role, which was confirmed combined with theoretical results and the actual measurement. The precision and accuracy of the method meet the requirement of the consistency analysis, which was available for the samples obtained from the various production processes.
(4) The research on the design and development of the database software aimed at the rare earth cobalt permanent magnet. The database software was developed based on the platform of Visual Studio by using the Access to store the data, and to which the original analysis data and the typical case report related obtained over these years were added. The database realized the function of search, review, modify, and add, which ensure the valid storage and security access to these valuable experimental data, so that the researchers could use these data for reference.
According the work above, the SmCo permanent microscopic study and the component analysis method was enriched, which provided the basis and reference for the further theoretical research and process control.
Keywords: SmCo permanent magnet, microscopic analysis, XRF, database
目录
目录
第一章绪论 (1)
1.1稀土永磁材料的发展概述 (1)
1.22:17型钐钴永磁的研究现状 (4)
环境污染与防治1.3课题研究背景及意义 (6)
1.4本论文主要工作 (7)
第二章电子显微分析技术在钐钴永磁材料研究中的应用 (9)
2.1扫描电子显微镜 (9)
2.1.1 仪器结构 (9)
电子科技大学学报
2.1.2 工作原理 (11)
2.2电子探针X射线显微分析仪 (12)
2.2.1 仪器结构 (13)
2.2.2 工作原理 (13)
2.3X射线荧光光谱仪 (14)
2.3.1 仪器结构 (14)
2.3.2 工作原理 (15)
2.4电子显微分析技术在钐钴永磁材料研究中的应用 (16)
2.4.1 铸锭金相观察 (16)
nino2.4.2 磨粉工艺选择 (18)
2.4.3 时效后毛坯分析 (19)
2.5本章小结 (21)
第三章高温钐钴永磁合金微观分析 (22)
dlt
液压泵的选择3.1实验方案 (22)
3.2分析结果 (22)
3.2.1 X射线衍射分析 (22)
3.2.2 热金相试验 (23)
冶金材料3.2.3 金相温度实验 (25)
3.3分析结果讨论 (27)
3.4本章小结 (28)
第四章掺铒的钐钴永磁体X射线荧光光谱分析 (30)
4.1实验部分 (30)

本文发布于:2023-07-12 09:41:57,感谢您对本站的认可!

本文链接:https://patent.en369.cn/xueshu/205748.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:材料   分析   温度   工艺   研究   微观   工作
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图