细胞凋亡时细胞骨架的结构改变的研究

阅读: 评论:0

细胞凋亡细胞骨架结构改变的研究
【摘要】细胞骨架是细胞重要的组成成分,维持着细胞正常形态和功能。凋亡时多种细胞骨架蛋白(如actin,myosin等)由于受凋亡因素作用,蛋白结构发生改变,进而引起凋亡细胞的形态改变。因而细胞骨架的改变在细胞凋亡发生过程中具有重要作用,提示可通过改变细胞骨架结构来诱导细胞凋亡,以达到肿瘤及其他疾病的目的。
【关键词】 细胞骨架  细胞凋亡  细胞骨架蛋白
0、引言
细胞骨架(cytoskeleton)是细胞内不同蛋白质纤维的聚合物和各种调控蛋白交错连接的网络结构,在维持真核细胞的形态、胞内运输、变形运动等方面发挥着重要的作用。细胞骨架主要有3个功能:细胞结构的空间组织作用;建立细胞内外环境中物理联系;协同细胞移动和改变细胞形态的作用。细胞骨架是动态结构,组成它的聚合物和调控蛋白处于连续不断地变化中,将细胞质蛋白和细胞器的活动整合为一个有机体。[1]
细胞凋亡是机体清除衰老、畸变或恶化细胞的一种主动、程序化的生理过程,是多细胞生物
维系其结构稳定和内环境功能平衡及生长发育必须的最基本的生物学过程[2]
    本文中就凋亡时细胞骨架蛋白的改变的研究进展作一综述。
1、细胞骨架的组成成分
    细胞骨架聚合物控制着真核细胞的形态和动力学特征,包括3种主要形式:肌动蛋白丝(actin  filament,AF)、微管(microtubule,MT)和中间丝(intermediate filament,IF),三者被组装成网络结构来抵制细胞变形,但在响应外应力时能够重新组装,在维持细胞完整性方面发挥着重要功能。肌动蛋白丝和微管的聚合与解聚是细胞形态变化的直接因素,与此同时分子马达在细胞各种组分的装配过程中发挥重要功能。
1.1微管
    微管是由微管蛋白原丝组成的不分支的中空管状结构。直径约25 nm,是细胞骨架成分,与细胞支持和运动有关。纺锤体、真核细胞纤毛、中心粒等均系由微管组成的细胞器。微管有最复杂的聚合和解聚特征,在细胞内的压力下会弯曲,在分裂间期,许多细胞会集合放射状排列的微管以便利用其稳定性,这些微管担当起中心轮毅和细胞内运输功能。
有丝分裂过程中,微管骨架会自发地重新排列形成纺锤体,把染体排列在一条线上[3]。一条微管能在两种状态之问交换:延伸和收缩。其动力学不稳定性使得微管骨架能快速地重组[4]
婴幼儿营养与保健
1.2微丝
微丝(microfilaments,MF)是由肌动蛋自分子螺旋状聚合成的纤丝,又称肌动蛋白丝,是细胞骨架的主要成分之一。微丝对细胞贴附、铺展、运动、内吞、细胞分裂等许多细胞功能具有重要作用。它没有微管稳固,但绑定肌动蛋自丝的交联蛋自具有高度稳定性,装配形成的束状网络结构和树突状网络结构高度稳定。成束的微丝对伸出的丝状伪足起支持作用,丝状伪足使细胞具有趋化性以及参与细胞间的通讯,并能够产生像在吞噬过程中细胞形态的变化。肌动蛋白丝能响应细胞信号系统的作用发生连续的聚合和解聚。如吞噬细胞伸出的伪足是在细胞表面接受趋化性的受体传递下来的信号刺激后,在细胞活跃的边缘带聚合成的。成纤维细胞的收缩作用是在肌动蛋白束的装配过程中,细胞表面的跨膜蛋白与配体结合时触发的。当肌动蛋白纤维和一些解聚因子(比如切割蛋白家族成员)或与一些聚合因子相互作用时,会发生更加复杂的动力学变化[2]
1.3中间丝
    中间丝是存在于真核细胞中介于微丝和微管之间,直径约10 nm的纤丝,是最稳定的细胞骨架成分,主要起支撑作用,因组成的蛋白质不同而有不同的命名。它们抵制拉力的能力比抵制压力要强的多,它们能被交联蛋白彼此或与肌动蛋白丝和微管交联在一起,通过和微管或肌动蛋白丝相互作用来形成细胞外应力响应结构,如上皮细胞中的中间丝组装成一个致密的网络抵御外力作用。近年来的研究表明,由核纤层蛋白聚合而成的中间丝,能维持真核细胞胞核结构的完整;核纤层蛋白被细胞周期蛋自依赖的激酶磷酸化从而促进有丝分裂开始时核膜的溶解 [5-6]。不同于微管及肌动蛋白丝,中间丝无极性,不能支持分子马达有方向性的运动。
2、凋亡时细胞骨架蛋白的改变
2.1. 细胞凋亡的形态学改变 
在细胞发生凋亡的过程中,其形态结构可发生一系列改变,如细胞与周围细胞脱离,表面原有的微绒毛、细胞间连接消失,核糖体逐渐从粗面内质网上脱离,内质网囊腔扩胀,
韩寒的杂志
染质固缩,核膜孔扩大及细胞出芽,凋亡小体形成。有研究显示,这些形态学改变与细胞骨架的变化关系密切[7]。
2.2 Caspase酶对细胞骨架的作用 
细胞凋亡是受细胞内源性基因、酶类和多种信号转导途径控制,激活后呈一个“瀑布式”的信号转导过程。各种凋亡刺激信号如病毒感染、生长因子缺乏、Fas/Apo-1配体、TNF-Ⅱ/TNF-ⅡR等,启动凋亡的发生,由p53、Caspases、Fas相关死亡结构域蛋白( fas-associ-ated death-domain, FADD)及TNF-ⅡR相关死亡结构域蛋白(TNF-Ⅱrassociated death-domain,TRADD)等介导凋亡信号转导,由Bcl-2蛋白家族、细胞素C及Caspases蛋白酶3个效应器所参与的调控、执行阶段,最后导致内源性核酸激酶激活,核细胞骨架重新组合,细胞骨架结构降解。
  Caspase对细胞骨架的影响是通过裂解具有细胞骨架调节功能的蛋白质,如成簇黏附激酶( focaladhesion kinase, FAK), p21活性激酶(p21-activatedkinase,PAK2)等,达到间接地重组细胞骨架结构的作用,由此影响到细胞骨架蛋白发生结构及形态上的变化,导致细胞骨架结构破坏。研究显示,Caspase-3活化后,可使细胞肌动蛋白(actin)、层黏连蛋白(laminin,LN)、胞
衬蛋白(fodrin)等多种作为细胞骨架的底物蛋白发生裂解,导致细胞从所黏附的基质或周围细胞中脱离,同时细胞形态出现染质浓缩、边集、细胞膜皱缩、凋亡小体形成等凋亡特征性改变。Kothakota等发现,由Fas和肿瘤坏死因子α(TNF-α)介导的人中性粒细胞凋亡过程中,Caspase-3激活后对其底物多聚腺苷二磷酸-核糖聚合酶(PARP)的裂解作用晚于对丝的作用,凝溶胶蛋白(gelsolin)蛋白裂解后产生一个352个氨基酸的NH2-末端。该末端可在细胞内以Ca2+非依赖方式对肌纤蛋白细胞骨架产生快速解聚会诱导细胞变圆,从其所黏附平板上脱落,并出现核碎裂等现象。其他研究也显示,表达该末端片段的腺病毒载体可导致黑素瘤细胞A7、M2和NIH3T3多种细胞的快速死亡。因此,裂解的凝溶胶蛋白可能是细胞凋亡过程中形态变化的重要因素。
  近年来,用砷剂(常用As2O3)白血病和某些肿瘤,取得良好的临床效果。其机制就是影响bcl-2蛋白家族表达,通过Fas/FasL依赖的途径激活Caspase-8。研究显示,As2O3能阻滞细胞的增殖,促进细胞凋亡,用As2O3诱导后细胞内Ezrin(一种能与细胞骨架发生相互作用的关键蛋白)、肌动蛋白和细胞骨架均减少,细胞形态发生改变,从而产生凋亡。[2]
2.3 细胞骨架蛋白的改变
国际刑事警察组织
2.3.1微丝和肌动蛋白(actin)的改变 
F-actin的解聚是凋亡过程中所必须的,其解聚出现在凋亡小体形成之前。actin是Caspases蛋白水解酶的作用底物,当Caspases攻击actin时,可将其切断降解为15kD和31kD两个片段,使之不能重新聚合,并由于15kD片段的形成而引起细胞凋亡形态的改变。Caspases除了可直接切断actin外,还可通过切断微丝系统中的调节蛋白来引起actin的变化。β-catenin是细胞间粘附调节蛋白,凋亡时被Caspase-3切断,去除了其N-末端和C-末端区的蛋白,而残余蛋白产物不能与α-catenin结合,影响actin组建,从而破坏了相邻细胞间actin微丝连接结构。胆固醇氧化物也可干扰actin的重组,表现为F-actin的解聚,应力纤维消失,微丝完全靠近细胞边缘并成块状等凋亡形态。微丝网络的重组也是凋亡小体形成中所必须,在凋亡小体中可见完好的微丝网络。用微丝干扰因子可以阻断凋亡小体的形成。
灵石二中
2.3.2 肌球蛋白(myosin)的改变
  细胞皱缩和细胞膜发泡是凋亡的重要形态改变。这一形态改变受肌球蛋白轻链(myosin light chain,MLC)磷酸化调节。当MLC磷酸化增加时,膜发泡增加。MLC激酶抑制可阻断
MLC磷酸化,同时MLC磷酸化受Rho信号途径调节。actin也参与了膜发泡,actin皮质环中的myosin II可使actin环产生向心力,内陷而引起actin和质膜连接较弱处形成突起发泡,因此当actin受破坏时,膜发泡也受到抑制。Lechler等在研究酵母I型myosins功能时,发现myosins直接参与actin聚合过程。actin的聚合依赖myosin动力区的磷酸化,此过程受cdc42调节。myosin I联系质膜与actin微丝,它的运动可使质膜突起并使微丝延长。达尔富尔
2.3.3 凝胶素(gelsolin)的改变
  gelsolin是凋亡的调节蛋白和效应蛋白。Gelsolin是Caspase-3的底物,在Fas刺激下,Caspase-3可切断gelsolin,形成39kD的N-末端和41kD的C-末端两个片段,其中N-末端片段产物作用于actin丝,引起actin解聚、细胞变圆,粘附力丧失,进而核碎裂等凋亡改变。
2.3.4  Gas 2的改变
  Gas 2(growth-arrest-specific 2peptide)是gas基因表达的蛋白产物,是微丝系统的组成成分是微丝相关蛋白,也是Caspases的死亡底物。凋亡时,Caspase-3特异地切断Gas 2的C端区,引起微丝的重排,继而细胞发生明显凋亡改变。
2.3.5 Fodrin的改变女行长的沉沦
  α-fodrin是膜相关骨架蛋白,在Fas和TNF引起的凋亡中被快速而特异地切断。Fodrin的被切是由Caspases介导的,实验证实α-fodrin的切割必须有Caspase-3参加。细胞素C可引起Caspase-3活化,进而Caspase-3切断fodrin引起凋亡。Fodrin的切断可能与膜发泡有关。Fodrin蛋白在actin微丝的末端交叉连接,将其连在质膜上,被Caspases降解后,影响actin结构致质膜发泡。
2.3.6 PAK2的改变
  PAKs(p21-activated kinases)是一类丝氨酸-苏氨酸激酶,其活性受小GTP酶如Rac,cdc42等调节。PAKs分子量为62kD,Jarkat T细胞凋亡时由Caspase-3介导的PAK2蛋白水解。将PAK2切成34kD的C端区片段,该片段的活性作用引起凋亡细胞形态和膜的改变。
2.3.7 微管和微管蛋白(tubulin)的改变
  许多破坏微管的药物如Dolastatin,可直接引起Bcl-2磷酸化而导致Bcl-2失活,并攻击微管,抑制微管和tubu-lin的装配,抑制有丝分裂的纺锤体形成而引起细胞凋亡。也有些药物
可活化一些酶类使bcl-2磷酸化如Taxol可活化CAMP依赖的蛋白激酶(PKA)引起细胞bcl-2磷酸化和凋亡。Taxol也可引起Caspase3的活化,启动凋亡。AS2O3的作用也日益引起重视。AS2O3有微管蛋白增强剂和微管蛋白抑制剂两种特征,在体外实验中,AS2O3能显著抑制GTP引起的聚合作用,并攻击微管蛋白,影响微管形成。资料显示,AS2O3连结tubulin的2个半胱氨酸残基,阻断GTP结合位点,干扰有丝分裂中微管的正常动力学。

本文发布于:2023-07-11 17:49:08,感谢您对本站的认可!

本文链接:https://patent.en369.cn/xueshu/202483.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:细胞   凋亡   蛋白   微管   细胞骨架   形态   作用
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图