一、填空题
1. 一个角的余角是30º,则这个角的补角是 .
2. 一个角与它的补角之差是20º,则这个角的大小是 .
3. 时钟指向3时30分时,这时时针与分针所成的锐角是 .
4. 如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.
5. 如图③,直线AB,CD,什么是以火灭火EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD = 28º,则∠BOE = 度,∠AOG = 度. 6. 如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度.
7. 把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠OGC = .
8. 如图⑦,正方形ABCD中,M在DC上,且BM = 10,N是AC上一动点,则DN + MN的最小值为 .
9. 如图所示,当半径为30cm的转动轮转过的角度为120 时,则传送带上的物体A平移的距离为 cm 。
10. 如图所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到图中EF和EG的位置,则△EFG为 三角形,若AD=2cm,BC=8cm,则FG = 。
11. 如图9,如果∠1=40°,∠2=100°,那么∠3的同位角等于 ,∠3的内错角等于 ,∠3的同旁内角等于 .
12. 如图10,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行. 若各矩形在AC上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c…的个数是_ . 二、选择题
同位角相等 对顶角相等
等角的补角相等 两直线平行,同旁内角相等
A . 1s22053, B. 2,创新思维的特征 C. 3, D. 4
2. 下列说法正确的是( )
A.两点之间,直线最短;
B.过一点有一条直线平行于已知直线;
C.和已知直线垂直的直线有且只有一条;
D.在平面内过一点有且只有一条直线垂直于已知直线.
3. 下列图中∠1和∠2是同位角的是( )
A. ⑴、⑵、⑶, B. ⑵、⑶、⑷, C. ⑶、⑷、⑸, D. ⑴、⑵、⑸
4. 如果一个角的补角是150°,那么这个角的余角的度数是 ( )
A.30° B.60° C.90° D.120°
5. 下列语句中,是对顶角的语句为 ( )
A.有公共顶点并且相等的两个角
B.两条直线相交,有公共顶点的两个角
C.顶点相对的两个角
D.两条直线相交,有公共顶点没有公共边的两个角
6. 下列命题正确的是 ( )
A.内错角相等
B.相等的角是对顶角
C.三条直线相交 ,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
7. 两平行直线被第三条直线所截,同旁内角的平分线 ( )
A.互相重合 B.互相平行蓝田股份 C.互相垂直 D.无法确定
8. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。下列图案中,不能由一个图形通过旋转而构成的是( )
9. 三条直线相交于一点,构成的对顶角共有( )
A、3对 B、4对 C、5对 D、6对
10. 如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有 ( )
A.5个 B.4个 C.3个 D.2个
11. 如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为( )。
A、30 B、36 C、42 D、18
12. 如图,若AB∥CD,则∠A、∠E、∠D之间的关系是 ( )
A.∠A+∠E+∠D=180°
B.∠A-∠E+∠D=180°
C.∠A+∠E-∠D=180°
D.∠A+∠E+∠D=270°
三、计算题
1. 如图,直线a、b被直线c所截,且a∥b,若∠1=118°求∠2为多少度?
2. 已知一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数等于多少?
四、证明题
1. 已知:如图,DA⊥AB,DE平分∠ADC,CE平分∠BCD,
且∠1+∠2=90°.试猜想BC与AB有怎样的位置关系,
并说明其理由
2. 已知:如图所示,CD∥EF,∠1=∠2,. 试猜想∠3与∠ACB有怎样的大小关系,
并说明其理由
3. 如图,已知∠1+∠2+180°,∠DEF=∠A,
试判断∠ACB与∠DEB的大小关系,
并对结论进行说明.
4. 如图,∠1=∠2,∠D=∠A,那么∠B=∠C吗?为什么?
五、应用题
1. 如图(a)示,五边形ABCDE是张大爷十年前承包的一块土地示意图,经过多年开垦荒地,现已变成图(b)所示的形状,但承包土地与开垦荒地的分界小路(即图(b)中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积) (1)写出设计方案,并在图中画出相应的图形;
(2)说明方案设计理由.
(a) (b)
答案
120°
1. 100°
2. 75°
3. 80°
4. 62°,59°
5. 90°
6. 125°
7. 10
8. 20π
9. 直角,6cm
10. 80,80,100
11. 9
BDDBDDCCDAAC
三、(1)解:∵ ∠1+∠3=180°(平角的定义)
又 ∵∠1=118°(已知)
∴∠3= 180°-∠1 = 180°-118°= 62°
∵a∥b (已知)
∴∠2=∠3=62°( 两直线平行,内错角相等 )
答:∠2为62°
(2)解:设这个角的余角为x,那么这个角的度数为(90°-x),这个角的补角为(90°+x),这个角的余角的补角为(180°-x) 依题意,列方程为:
180°-x=(x+90°)+90°
解之得:x=30°
这时,90°-x=90°-30°=60°.
答:所求这个的角的度数为60°.
另解:设这个角为x,则:
180°-(90°-x湖南中医药大学学报)-(180°-x) = 90°
解之得: x=60°
答:所求这个的角的度数为60°.
四、(1)解: BC与AB位置关系是BC⊥AB 。其理由如下:
∵ DE平分∠ADC, CE平分∠DCB (已知),
∴∠ADC=2∠1, ∠DCB=2∠2 (角平分线定义).kernelfaultcheck
∵∠1+∠2=90°(已知)
∴∠ADC+∠DCB = 2∠1+2∠2
= 2(∠1+∠2)=2×90° = 180°.
∴ AD∥BC(同旁内角互补,两直线平行).
∴ ∠A+∠B=180°(两直线平行,同旁内角互补).
∵ DA⊥AB (已知)
∴ ∠A=90°(垂直定义).
∴∠B=180°-∠A = 180°-90°=90°
∴BC⊥AB (垂直定义).
(2)解: ∠3与∠ACB的大小关系是∠3=∠ACB,其理由如下:
∵ CD∥EF (已知),
∴∠2=∠DCB(两直线直行,同位角相等).
又∵∠1=∠2 (已知),
∴ ∠1=∠DCB (等量代换).
∴ GD∥CB ( 内错角相等,两直线平行 ).