第32卷第2期化㊀学㊀研㊀究Vol.32㊀No.22021年3月
CHEMICAL㊀RESEARCH
Mar.2021
三嗪⁃三苯胺基磁性吸附剂Ni/CTPCC-TPA用于水中硝基苯酚的吸附 王㊀媛,甘修培,付蒙蒙,赵文杰∗
(河南工业大学化学化工学院,河南郑州450001)
收稿日期:2021⁃01⁃24
基金项目:国家自然科学基金资助项目(21675040);河南省高校科
技创新人才资助项目(20HASTIT007)
作者简介:王媛(1995-),女,研究方向为谱分离㊂∗通讯联系人,
E⁃mail:wjiezh@126.com
摘㊀要:污水治理是当今社会面临的一大难题㊂通过傅⁃克反应以三聚氰氯和三苯胺为原料合成一种新型共价三嗪聚合物并加镍磁化用于污水中硝基苯酚的吸附㊂从化学结构上看,三嗪环和芳香环的存在提供疏水和π-π相互作用㊂测得三嗪⁃三苯胺材料SBET=680m2㊃g-1,孔径在2nm左右,磁化后的比表面积仅为170m2㊃g-1,这与Ni占据了少量吸附位点有关㊂从热力学㊁动力学角度介绍了吸附过程和吸附机理,同时评价了不同pH和盐浓度对吸附的影响㊂吸附实验表明,对硝基苯酚和2,4⁃二硝基苯酚的吸附主要为物理吸附,而2,4,6⁃的吸附为化学吸附㊂ 关键词:共价三嗪聚合物;磁性吸附剂;硝基苯酚中图分类号:O657
文献标志码:A
文章编号:1008-1011(2021)02-0152-08模块制作
Triazine⁃triphenylaminemagneticadsorbentNi/CTPCC-TPA
fortheadsorptionofnitrophenolinwater
WANGYuan GANXiupei FUMengmeng ZHAOWenjie∗
CollegeofChemistryandChemicalEngineering HenanUniversityofTechnology Zhengzhou450001 Henan China
Abstract Nowadays,thesewagetreatmentisamajorprobleminsociety.Anovelcovalenttriazine
polymerwassynthesizedfromcyanuricchlorideandtriphenylaminebyFriedel⁃Craftsreactionand
magnetizedwithnickelfortheadsorptionofnitrophenolinsewage.Fromthechemicalstructure,thepresenceoftriazineandaromaticringsprovideshydrophobicandπ-πinteractions.TheBrunauer⁃Emmett⁃Teller(BET)surfaceareaoftriazine⁃trianilinematerialis680m2㊃g-1andtheporesizeisabout2nm.Thespecificsurfaceareaaftermagnetizationisonly170m2㊃g-1.Theadsorptionprocessandmechanismwer
eintroducedfromthermodynamicsandkinetics,andtheeffectsofdifferentpHvaluesandsaltconcentrationsontheadsorptionwereevaluated.Adsorptionexperimentsshowthattheadsorptionsofp⁃nitrophenoland2,4⁃dinitrophenolbelongtothephysicaladsorption,whiletheadsorptionof2,4,6⁃trinitrophenylphenolbelongstochemicaladsorption.Keywords:covalenttriazinepolymer;magneticadsorbent;nitrophenol㊀㊀环境污染已成为全世界所面临的重大挑战之一㊂目前,污水处理已成为一个热点问题㊂水中的有机污染物具有剧毒和难以降解的特点,是污水处理的主要目标[1-2]㊂硝基苯酚是一种持久性有机污染物,广泛地用于石油㊁化工行业,是油漆㊁塑料㊁橡 胶㊁农药㊁感光材料的重要原料和中间体[3-9]㊂对于持久性有机污染物而言其处理过程耗时㊁费力㊁投入大,导致水中的硝基苯酚物质越来越多,尤其是应用广泛的对硝基苯酚(PNP)㊁2,4⁃二硝基苯酚(DNP)㊁
2,4,6⁃(TNP)[10]㊂这些物质毒性剧烈,即使在低浓度下也会危害人类健康,已被美国列入优先污染物㊂随着废水排放的增加,急需开发一种可靠㊁有效的吸附剂用于去除水 中的硝基苯酚污染物[11]㊂
目前,从污水中去除硝基苯酚的方法有很多,如生物法[12]㊁膜分离法[13]㊁光催化法[14]㊁电化学
第2期
王㊀媛等:三嗪⁃三苯胺基磁性吸附剂Ni/CTPCC-TPA用于水中硝基苯酚的吸附
153
㊀法[15]㊁吸附法[16]㊁Fenton法[17]等㊂吸附法由于操作简单㊁吸附剂种类繁多㊁成本低等优点而得到了广泛的应用,被认为是一种很有前途的方法[18-20]㊂同时,吸附过程中不产生有毒代谢物,因此多孔材料是吸附去除水中有机物的首选[21]㊂目前,商用活性炭是吸附首选材料,但活性炭作为吸附剂因再生困难而受到限制[22]㊂因此,设计一种成本低㊁吸附效
率高的绿吸附剂对水中硝基苯酚的吸附无疑具有重要意义㊂
共价三嗪聚合物(Covalenttriazinepolymers,CTPs)是一种由三嗪环和苯环交替构建的具有微孔结构的二维拓扑材料,因为它们具有极高的孔隙率㊁
可调节的孔结构,被认为具有储存和分离小分子的潜力[23-27]㊂从结构上看,这种聚合物可以提供疏水㊁π-π㊁氢键等相互作用㊂特别是电子供体基团与硝基苯酚之间存在特定的电荷转移㊂静电相互作用和π-π相互作用是吸附和去除硝基苯酚的主要机制[28-29]㊂此外,它的比表面积大㊁化学稳定性好㊁溶剂稳定性好,并能提供多个吸附位点,可以作为良好吸附剂㊂
本研究通过傅⁃克反应以三聚氰氯(电子受体)和三苯胺(电子给体)为有机配体实现 有机⁃有机共组装 制得一种新型共价三嗪聚合物(CTPCC-TPA),并加Ni磁化制成磁性吸附剂Ni/CTPCC-TPA吸附污水中的硝基酚㊂在吸附热力学和吸附动力学下探讨了对TNP㊁DNP和PNP的吸附机理㊂CTPCC-TPA是强疏水性材料,当与分析物接触时,强疏水性使其浮在溶液上方导致吸附剂与吸附质接触不充分,从而影响吸附效果㊂并且单纯用CTPCC-TPA做吸附剂在分离过程中会增加操作步骤,增加时间㊂而赋磁之后虽会使吸附效果略微降低,但在外加磁场下可实现快速吸附并分离,简化操作㊂
1㊀实验部分
1.1㊀试剂与仪器
三聚氰氯(纯度99%,北京百灵威科技有限公司);三苯胺(纯度98%,阿拉丁试剂有限公司);1,2⁃二氯苯(纯度98%,北京百灵威科技有限公司);六水氯化镍(纯度98%,阿拉丁
试剂有限公司);无水三氯化铝(分析纯,北京化工厂);氢氧化钠(分析纯,科密欧化学试剂有限公司);乙二醇(分析纯,天津凯通实业有限公司);对硝基苯酚(分析纯,上海麦克林生化科技有限公司);2,4⁃二硝基苯酚(分析纯,上海麦克林生化科技有限公司);2,4,6⁃(分析纯,上海麦克林生化科技有限公司)㊂
WQF⁃510傅立叶变换红外光谱仪;400M固体abp263
核磁;RigakuD/Max2500X射线衍射仪;Autosorb⁃iQ2微孔分析仪;PERKIN⁃ELMER2400Series;紫外分光光度计UV2450㊂
1.2㊀磁性吸附剂Ni/CTPCC-TPA的制备1.2.1㊀CTPCC-TPA的制备
依次加入0.92g(5mmol)三聚氰氯㊁1.33g(10mmol)无水AlCl3㊁200mL邻二氯苯㊁1.23g(5
mmol)三苯胺混合均匀,加N2保护,140ħ下磁力搅拌8 10h㊂冷却至室温,冰水淬灭AlCl3,抽滤得到棕黄粗产物,用丙酮㊁四氢呋喃㊁甲醇为溶剂索式提取,60ħ蒸空干燥得到聚合物CTPCC-TPA㊂产率为89%(C:70.09%,H:4.54%,N:15.77%)㊂1.2.2㊀磁性吸附剂Ni/CTPCC-TPA的制备
向反应釜中依次加入450mgNiCl2㊃6H2O㊁25
mL乙二醇㊁100mgCTPCC-TPA涡旋混匀,再加入0.6g
NaOH振荡混匀,180ħ反应13h㊂冷却后用去离子水㊁乙醇洗涤,60ħ烘干备用(反应式如图1所示)㊂
产率为78%㊂
图1㊀磁性Ni/CTPCC⁃TPA的制备(图中黑点为磁源Ni)
Fig.1㊀PreparationofmagneticNi/CTPCC⁃TPA(blackpointinthefigureismagneticsourceNi)
154㊀化㊀学㊀研㊀究2021年1.3㊀吸附动力学实验
在PNP㊁DNP㊁TNP(10mL20mg㊃L-1)溶液中
加入10mg吸附剂Ni/CTPCC-TPA,20ħ恒温静置吸
附,每隔5㊁10㊁20㊁30㊁60㊁120㊁240min后取上清液,
测吸光度,做三组平行试验,取平均值㊂最后计算不
同时间的吸附量,计算公式如下:
qt=c0-ct
m
ˑV(1)
式中qt是吸附t时间的吸附量(mg㊃g-1),C0是溶液初始浓度(mg㊃L-1),Ct是t时间溶液浓度(mg㊃L-1),m是吸附剂的质量(g),V是溶液体积(L)㊂1.4㊀吸附等温线及吸附热力学实验
将10mgNi/CTPCC-TPA分别加入到10mL不同浓度(10㊁20㊁25㊁30㊁35㊁40mg㊃L-1)硝基苯酚溶液中,在不同温度下(20㊁30㊁40ħ)静置吸附10h后外加磁场分离后取上层清液,测吸光度,做三组平行试验,取平均值㊂最后计算等温平衡吸附量,计算公式如下:
qe=c0-ce
m
ˑV(2)
式中qe是平衡时的吸附量(mg㊃g-1),C0是溶液初始浓度(mg㊃L-1),Ce是达平衡时溶液浓度(mg㊃L-1),m是吸附剂的质量(g),V是溶液的体积(L)㊂利用吸附平衡常数(K0)㊁吉布斯自由能变(ΔG)和焓变(ΔH)及熵变(ΔS)等热力学参数深入探讨Ni/CTPCC-TPA对硝基苯酚的吸附机理,计算公式如下:
K0=
qe
Ce
(3)
ΔG=-RTlnK0(4)
lnK0=ΔSR-ΔHRT(5)其中qe是平衡吸附容量(mg㊃g-1);Ce是不同温度下吸附到达平衡状态时溶液的浓度(mg㊃L-1);R是理想气体常数(8.314J㊃mol-1㊃K-1);T是绝对温度(K);K0是热力学平衡常数(L㊃g-1)㊂
2㊀结果与讨论
2.1㊀表征
用傅立叶变换红外光谱(FT⁃IR)对得到的材料进行表征,如图2a所示㊂在1480和1590cm-1处的峰可归属为芳香环上C=C和C=N吸收峰,1290cm-1处的峰可归因于芳基叔胺中C-N的伸缩振动,这证明有三嗪环㊂此外,在818cm-1附近发现了一个吸收峰,表明苯环是对位取代的㊂
用固体核磁(13CNMR)谱图进一步鉴定了材料的化学结构,如图2b,170处的峰归结于三嗪环上的不饱和碳原子;在146处的峰归属于三苯胺单元上与N原子相连的苯环上的C原子,130处为其他
C
原子的峰㊂3组特征共振峰进一步证明CTPCC-TPA含
三嗪环和三苯胺单体㊂
图2(a)Ni/CTPCC-TPA和CTPCC-TPAFT-IR红外图谱;(b)CTPCC-TPA固体核磁图谱
Fig.2㊀(a)FTIRspectrumofNi/CTPCC-TPA㊀andCTPCC-TPA;(b)13CNMRofCTPCC-TPA
第2期
王㊀媛等:三嗪⁃三苯胺基磁性吸附剂Ni/CTPCC-TPA用于水中硝基苯酚的吸附
155
㊀㊀㊀图3a为Ni/CTPCC-TPA和CTPCC-TPA的N2吸附⁃脱附等温线,首先,所选压力范围的V值随P/P0的增加而增大㊂CTPCC-TPA的比表面积为596.6m2㊃g-1;当数据取点为0.059 0.20时,得到多点BET为616.7m2㊃g-1;最高单点吸附总孔体积为0.547cm3㊃g-1㊂测得SABET=680m2㊃g-1㊂磁化后的Ni/CTPCC-TPA的比表面积为170m2㊃g-1,原因为Ni占据了部分吸附位点㊂由图3b可知,CTPCC-TPA的孔
径大约2nm,呈微孔结构㊂
图3c为CTPCC-TPAX射线粉末衍射图,在2θ=
15ʎ 30ʎ范围内出现较宽衍射峰,其余角度无明显
衍射峰,说明骨架呈现有序的排列,判断CTPCC-TPA结构为无定型聚合态㊂
图
3d为热重曲线,两种材料在200ħ前均无明显失重,即使在800ħ时仍保留58%以上的质量,表明具有良好的热稳定性,与其他文献报道一致㊂另克
图3㊀(a)CTPCC-TPA和Ni/CTPCC-TPAN2吸附-脱附曲线;(b)CTPCC-TPA孔径分布;
(c)CTPCC-TPA粉末射线衍射;(d)CTPCC-TPA和Ni/CTPCC-TPA热重曲线
pshoFig.3㊀(a)Nitrogenadsorption⁃desorptionisothermsofCTPCC-TPAandNi/CTPCC-TPA;(b)proesdistributionofCTPCC-TPA;
(c)PXRDdiagramofCTPCC-TPA;(d)TGAforCTPCC-TPAandNi/CTPCC-TPA
2.2㊀吸附动力学
通过吸附动力学研究了接触时间对吸附效率的影响,评价了Ni/CTPCC-TPA对PNP㊁DNP㊁TNP的吸附能力㊂如图4所示,在前50min此吸附剂对这三种硝基苯酚的吸附速率和吸附容量呈现急剧增加的趋势,2h达到最大吸附效率㊂溶液中PNP多以分子形式存在,容易和吸附剂发生π-π作用迅速被吸引,且体积较小容易进入孔道㊂而TNP含三个硝
鱼笼
基,相对分子质量比PNP大,体积也大,进入Ni/CTPCC-TPA孔道比较困难㊂
动力学拟合参数汇总在表1中㊂结果表明,使
用伪二阶模型和伪一阶模型都能获得很好的拟合曲
线㊂平衡吸附量的计算值(PNP10.4mg㊃g-1㊁DNP12.5mg㊃g-1㊁TNP17.3mg㊃g-1)与实验值非常接近㊂但PNP㊁DNP的伪一级模型的R2稍大于伪二
级模型,则PNP㊁DNP的吸附更加符合伪一级模型,
156㊀化㊀学㊀研㊀究2021年
表明PNP㊁DNP的吸附过程为物理吸附㊂而伪二级模型更适合TNP的吸附,说明该吸附剂对TNP的吸附过程为化学吸附,这表明TNP在Ni
/CTPCC-TPA上
的吸附速率不是简单的扩散,而是取决于吸附位点的可用性,即电子转移㊂
图4㊀(a)吸附动力学曲线;(b)伪二级动力学直线拟合
Fig.4㊀(a)Adsorptiondynamiccurve;(b)Quasi⁃second⁃orderdynamicstraightlinefitting
表1㊀伪一级动力学和伪二级动力学参数
Table1㊀Quasi⁃first⁃orderandquasi⁃second⁃orderkineticparameters
类型伪一级模型
伪二级模型qe/(mg/g)k1/(min-1)R2
qe/(mg/g)k2/(g/(mg㊃min))
R2PNP
10.4220.046470.9903
11.0110.00580.9894DNP12.4780.041430.993913.1060.00300.9932TNP16.701
0.00348
0.9897
17.306
0.0011
0.9944
2.3㊀吸附等温线及热力学
在不同温度下对不同初始浓度的硝基苯酚进行了吸附研究(图5㊁表2所示)㊂结果表明,在Langmuir等温吸附模型下,DNP和TNP的R2均接近于1,说明Langmuir模型可很好地描述吸附过程,表明目标分子在吸附位点上具有单层吸附㊂随着浓度的增加,平衡吸附量先增加后保持水平(吸附饱和阶段)㊂其原因可能是当活性中心未达到吸附饱和时,初始浓度越高,强度驱动力越大,从而克服了传质阻力㊂更重要的是,升高温度有助于吸附容量增加㊂从表3可知,三个温度下ΔG均为负值证实了Ni/CTPCC-TPA吸附DNP和TNP的过程是自发进行的㊂另外,ΔG的绝对值随温度的增大而逐渐升高,表明较高的温度有利于吸附的进行㊂ΔS大于0,表明该吸附是一个熵驱动过程而并非焓驱动㊂
2.4㊀盐浓度对吸附效率的影响
考察了盐浓度对吸附效率的影响㊂由图6可知,低浓度的NaCl对吸附效果无显著影响㊂随着Na+浓度的增大,对TNP㊁DNP㊁PNP的吸附量逐渐减少,说明当加入盐溶液后溶液中的阴阳离子在其吸附过程中会发生竞争吸附㊂
2.5㊀pH值对吸附效率的影响
考察了溶液pH对吸附效果的影响,因为这三种物质在不同的pH下呈现不同的形式㊂图7显示,随着溶液pH值的增大,TNP㊁DNP㊁PNP的吸附量都呈现先增长后下降的趋势,TNP和DNP的最佳吸附pH为4,PNP的最佳pH为6㊂H+含量越多,硝基苯酚越容易被质子化,疏水作用越弱,越有利于吸附㊂当pH小于6时,硝基苯酚存在形式逐渐从离子态转为分子态,在强酸环境中,硝基苯酚大部分以分子形式存在,与Ni/CTPCC-TPA静电作用力减少,造成吸附效果下降㊂pH大于8时,硝基苯酚离子化,削弱了吸附剂与吸附质之间的静电吸引㊂同时,硝基苯酚在高pH下呈现低吸附效率是由于过量的OH-与硝基苯酚阴离子竞争吸附位点所致㊂