小学奥数题库——统筹规划

阅读: 评论:0

板块一、合理安排时间
【例 1】 一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎3张饼需几分钟?怎样煎?
【巩固】 (2000年《小学生数学报》数学邀请赛)平面度怎么测量烙饼需要烙它的正、反面,如果烙熟一块饼的正、反面,各用去3分钟,那么用一次可容下2块饼的锅来烙21块饼,至少需要多少分钟?
【巩固】 一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎2009张饼需几分钟?
【例 2】 星期天妈妈要做好多事情。擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。妈妈干完所有这些事情最少用多长时间?
【巩固】 小明在家的一面墙上贴奖状,一共有32张,给一张奖状涂满胶水需要2分钟,涂完胶水后要过2分钟才能往墙上贴,贴的过程需要1分钟,但是如果等待超过6分钟的话胶
水就会干掉不能再贴,问:小明最快用多长时间能贴完所有的奖状?
【例 3】 小明骑在牛背上赶牛过河.共有甲、乙、丙、丁堆栈式4头牛.甲牛过河需要1分钟,乙牛过河需要2分钟,丙牛过河需要5真空超导分钟,丁牛过河需要6分钟.每次只能赶两头牛过河,那么小明要把这4头牛都赶到对岸,最小要用多少分钟?
【例 4】 有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?
【例 5】 有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢?
【巩固】 (迎春杯试题)小强、小明、小红和小蓉4个小朋友效游回家时天已晚,他们来到一条河的东岸,要通过一座小木桥到西岸,但是他们4个人只有一个手电筒,由于桥的承重量小,每次只能过2人,因此必须先由2个人拿着手电筒过桥,并由1个人再将手电筒送回,再由2个人拿着手电筒过桥……直到4人都通过小木桥.已知,小强单独过桥要离子接地棒1分钟;小明单独过桥要分钟;小红单独过桥要2分钟;小蓉单独过桥要分钟.那么,4个人都通过小木桥,最少要多少分钟?
【例 6】 有甲、乙两个水龙头,6个人各拿一只水桶到水龙头接水,水龙头注满营养块6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.怎么安排这6个人打水,才能使他们等候的总时间最短,最短的时间是多少?
【巩固】 6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少?
【巩固】 理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要1012152024分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所
用时间的总和最少?最少时间为多少?
【例 7】 (101培训试题)车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为1830172520分钟,每台车床停产一分钟造成经济损失5元.现有两名工作效率相同的修理工,⑴ 怎样安排才能使得经济损失最少?⑵ 怎样安排才能使从开始维修到维修结束历时最短?
【例 8】 (三帆中学入学考试试题h1n7)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,如何巧妙安排这十个人打水,使他们总的费时时间最少?最少的时间是多少?
【例 9】 (小学数学报试题)右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分).小明从AB最快要几分钟?

本文发布于:2023-05-12 16:15:51,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/4/96954.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:需要   过河   过桥   时间   个人   水龙头   才能   事情
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图