一种低成本高效制备液氢方法与流程

阅读: 评论:0



1.本发明涉及液氢生产技术领域,更具体地说,本发明涉及一种低成本高效制备液氢方法。


背景技术:



2.液氢是通过预冷和膨胀节流等工艺,把氢气降温到-253℃从而变成液体,密度可达普通氢气的780倍,使得氢气可以高效地储存和运输。同时,在-253℃低温下,除了氦、氖稀有气体之外的所有气体杂质都会凝固分离,因此液氢汽化很容易获得6n(99.9999%)及以上的超纯氢。超纯氢在电子工业尤其是微电子、光电子产品生产中有极为广泛的应用市场,包括大规模集成电路芯片、平板显示器、光伏电池等战略性新兴产业。
3.液氢有代表性的生产方法,分别介绍如下:
4.(1)节流液化循环(预冷型linde-hampson系统)
5.1895年,德国林德(linde)和英国汉普逊循环(hampson)分别独立提出,为工业上最早采用的循环,所以也叫林德或汉普逊循环。该系统是先将氢气用液氮预冷至转换温度(2046k)以下,然后通过j-t节流(jt节流就是焦耳-汤姆逊节流的缩写)实现液化。
6.采用节流循环液化氢时,必须借助外部冷源,如液氢进行预冷气氢经压机压缩后,经高温换热器、液氮槽、主换热器换热降温,节流后进入液氢槽,部分被液化的氢积存在液氢槽内,未液化的低压氢气返流复热后回压缩机。
7.(2)带膨胀机液化循环(预冷型claude系统)
8.1902年由克劳特(g claude)发明。通过气流对膨胀机做功来实现液化,所以带膨胀机的液化循环也叫克劳特液化循环。其中,中高压系统采用活塞式膨胀机(流量范围广,效率75~85%),低压系统采用适平膨胀机(《4300kw/d,效率85%)。压缩气体通过膨胀机对外做功可比j-t节流获得更多的冷量,因此液氮预冷型claude系统的效率比l-h系统高50~70%,热力完善度为50~75%,远高于l-h系统。目前世界上运行的大型液化装置都采用此种液化流程。
9.(3)氦制冷液化循环
10.该工艺包括氢液化和氦制冷循环两部分。氦制冷循环为claude循环系统,这一过程中氦气并不液化,但达到比液氢更低的温度(20k);在氢液化流程中,被压缩的氢气经液氮预冷后,在热交换器内被冷氦气冷凝为液体。
11.以上3个工艺中,液氢生产都比较复杂,存在以下共同缺点:

制冷温度低,制冷量大,单位能耗高,目前氢液化技术能耗为15.2kw.h/kg,高达液氢燃烧产热量的30~40%,效率普遍较低(20~30%);

作为预冷材料使用液氮,该液氮用于液化的压缩动力大,电力费高。


技术实现要素:



12.为了克服现有技术的上述缺陷,本发明的实施例提供一种低成本高效制备液氢方
法。
13.一种低成本高效制备液氢方法,具体为:
14.液化天然气气化生成天然气,天然气制造氢气,氢气冷却液化得到液氢;
15.利用液化天然气冷能来冷却和液化氮,利用液化氮冷能在氢液化过程中用于氢气体的冷却。
16.进一步的,包括使液化天然气气化而生成天然气的气化工序、从天然气制造氢气体的氢气体制造工序、使氢气体冷却并液化的氢液化工序;在该过程中,使用液化天然气的汽化潜热用于氢液化过程中氢气体的冷却。
17.进一步的,还包括使液化天然气气化而生成天然气的天然气气化器、从天然气制造氢气体的氢气制造装置、使氢气体冷却并液化的氢液化装置。
18.进一步的,在氢液化装置中,在氢气体的液化天然气贮槽对氢气体进行冷却,同时将液化天然气贮槽生成的天然气导入所述氢气体制造装置中;在液化天然气气化生成天然气时,其气化潜热被用于氢液化工程中的氢气体的冷却,因此能够高效地同时进行液化天然气的气化和氢气体的液化,可以飞跃性地提高液氢制造效率。
19.进一步的,所述氢气制造装置包括水蒸气改质装置和氢psa装置;天然气与水蒸气改质装置进料口贯通,所述水蒸气改质装置出料口与氢psa装置进料口连接,所述氢psa装置出料口与氢液化装置进料口贯通;水蒸气改质装置使天然气发生改质反应而生成包含氢气体的混合气体;氢psa装置对从混合气体进行中精制分离,提炼分离氢气体。
20.进一步的,还包括液化天然气罐,所述液化天然气罐输出端分别与天然气气化器、液化天然气贮槽连通。
21.进一步的,所述氢液化装置包括液氢生成线和氢循环线、所述液化天然气贮槽设于氢液化装置内部,所述氢液化装置还包括第一正仲氢转化器、第一jt阀、第二jt阀、第一热交换器、第二热交换器、第二正仲氢变换器、液氢储存槽、氢气冷却器、热交换器hx1、热交换器hx2、热交换器hx3、热交换器hx4、氢气压缩器c1、氢气压缩器c2、膨胀涡轮t1、膨胀涡轮t2;所述液氢生成线用于生产液化氢;所述氢循环线用于对液化氢生产过程中的氢气进行循环处理。
22.进一步的,所述氢气压缩器c1、氢气压缩器c2一侧均设置氢气冷却器,所述氢气压缩器c1、氢气压缩器c2、氢气冷却器串联。
23.进一步的,所述液氢生成线按照流程顺序依次包含热交换器hx1、液化天然气贮槽、第一正仲氢转化器、热交换器hx2、热交换器hx3、热交换器hx4、第一jt阀、第一热交换器、第二正仲氢变换器、第二热交换器、液氢储存槽,所述第一正仲氢转化器设于液化天然气贮槽内部;所述第一热交换器、第二正仲氢变换器、第二热交换器均设于液氢储存槽内部;通过利用液化天然气的气化潜热来冷却第一正仲氢转化器,能够促进氢气体的正仲氢变换来提高其液化效率;通过将第一正仲氢转化器23浸入液化天然气贮槽22,能对第一正仲氢转换器高效进行冷却;在氢液化装置具备氢气压缩器的情况下,通过上述氢气的冷却减少压缩器的吸入体积,能够减少该压缩器的必要动力,提高装置整体的运转效率。
24.进一步的,所述氢循环线按照流程顺序依次包含液氢储存槽、热交换器hx4、热交换器hx3、热交换器hx2、氢气压缩器c2、氢气压缩器c1、氢气冷却器、热交换器hx2、热交换器hx3、热交换器hx4、第二jt阀、液氢储存槽;所述氢气冷却器输出端分别与第二jt阀、膨胀涡
轮t1、膨胀涡轮t2的输入端连接,所述第二jt阀输出端与液氢储存槽连接,所述膨胀涡轮t1、膨胀涡轮t2的输出端与氢气体压缩器c2的输出端连接。
25.本发明的技术效果和优点:
26.1、本发明以液化天然气气化生成的天然气为原料制造氢气体,在将该氢气体液化制造液氢时,至少一部分液化天然气的气化潜热用于氢液化的氢冷却因此具有高效制造液氢的效果;天然气以甲烷为主要成分,而且几乎不含硫磺成分,因此具有简化或省略脱硫处理的优点;因此,如果有效利用该液化天然气所持有的冷能,则有望显著提高氢制造效率;与传统的液氢制造方法相比,传统的液氢制造方法需要使用液氮作为氢深冷材料,制造该液氮由于液化的压缩动力大,电力费用高,占制液氢总耗电成本70%以上;
27.2、本发明以液化天然气气化生成的天然气为原料制造氢气体,在将该氢气体液化制造液氢时,利用液化天然气冷能来冷却和液化循环氮,将深冷液化氮用于氢液化的冷能;可以大幅降低液去制造的动力费和电费,并具有设备简单,高效制造液氢的效果;同时由于液氢空气分离装置所达到的温度比天然气温度还低,因此天然气的冷量能得到最佳的利用,采用天然气冷能进行空气分离不但降低了能耗,而且简化了空分流程,减少了建设费用,同时也将降低了天然气气化的费用。
附图说明
28.附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
29.图1是本发明中整体的工艺简图;
30.图2是本发明中氢液化装置的流程图;
31.图3是本发明中氢气体压缩器被多段连接时的流程图;
32.图4是本发明中液氢制造过程的整体结构图;
33.图中:
34.10、液化天然气罐;12、天然气气化器;16、水蒸气改质装置;18、氢psa装置;20、氢液化装置;21a、液氢生成线;21b、氢循环线;22、液化天然气贮槽;23、第一正仲氢转化器;24a、第一jt阀;24b、第二jt阀;25a、第一热交换器;25b、第二热交换器;26、第二正仲氢变换器;27、液氢储存槽;28、氢气冷却器。
具体实施方式
35.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
36.如图1-4所示:
37.本发明提供了一种低成本高效制备液氢方法,具体方法步骤如下:
38.在图1中,在液化天然气(以下称为“天然气”)罐10内,例如储存在运输船运来的天然气,通过该天然气由天然气气化器12气化,生成天然气(以下称为“ng”);
39.具体而言,将ng导入到水蒸气改质装置16;该水蒸气改质装置16具备收容触媒的
触媒室和将上述ng的一部分作为燃料的燃烧器,通过该燃烧器的辐射热在上述触媒室内被加热的状态下在同一时间内导入上述ng和水蒸气而产生改质反应,生成改质气体;
40.该改质气体通过附属于水蒸气改质装置16的煤气锅炉和co变压器,作为富含氢气体的混合气体被输送到后续的氢psa装置18;在该氢psa装置18中,吸附除去混合气体中的氢以外的成分,由此分离精制高纯度的氢气体;
41.以上的方式精制的高纯度氢气体由氢液化装置20液化,作为产品液体氢出厂;
42.图3所示的液氢生成线21a和氢循环线21b;液氢生成线21a用于生产液化氢;氢循环线21b用于对液化氢生产过程中的氢气进行循环处理;
43.从液化天然气罐10送出的液化天然气的一部分不经由天然气气化器12直接导入到氢液化装置20中,在该氢液化装置20中气化,通过其气化潜热贡献了氢液化装置20内的用于氢气的冷却能后、作为ng被导入到水蒸气改质装置16中;
44.在液氢生成线21a中导入的高纯度氢气体,在由第一级热交换器hx1预冷后,导入到收容适当触媒的高温侧第一正仲氢转化器23中,在此,氢气体中的正氢的一部分被转换为仲氢;由此,氢气体中的参数氢浓度例如从25%上升到50%;
45.由于该正仲氢转化是发热反应,所以需要对第一正仲氢转化器23进行冷却,但是作为该装置的第一特征,液化天然气的冷能被用于第一正仲氢转化器23的冷却;
46.具体而言,图示的氢液化装置20作为转换器冷却部具备液化天然气贮槽22,在该液化天然气贮槽22内存储有从上述液化天然气罐10适当补给的液化天然气,并且,第一正仲氢转化器23浸入该液化天然气贮槽22内的方式构成,该第一正仲氢转化器23中的发热通过液化天然气贮槽22内的天然气的气化潜热被吸收;
47.换言之,通过第一正仲氢转化器23的发热促进天然气的气化,由此与上述天然气气化器12时不同地进行ng的生成;所产生的ng在通过第一级热交换器hx1与导入氢气体等进行热交换后,作为原料导入到图1所示的水蒸气改质装置16中;
48.通过热交换器hx2、hx3、hx4进一步冷却后,由第一jt阀24a进行绝热膨胀,使在第一正仲氢转化器23中提高了正氢浓度的氢气液化;该液化氢通过第一热交换器25a导入到低温侧第二正仲氢变换器26内,在第二正仲氢变换器26内残留在液氢中的正氢的大体上全部变换为仲氢;这样,氢浓度几乎100%的液体氢通过液氢储存槽27内的第二热交换器25b,作为产品被送出到系统外;
49.液氢储存槽27内的氢与产品液体氢分开,作为冷媒而循环氢循环线21b;具体地说,从液氢储存槽27内按照热交换器hx4、热交换器hx3、热交换器hx2、热交换器hx1的顺序逆行升温多段热交换器,由低压侧氢气压缩器c2及高压侧氢气压缩器c1压缩后,在热交换器hx1、液化天然气贮槽22内设置的热交换器依次通过氢气冷却器28、热交换器hx2、热交换器hx3、热交换器hx4进行冷却,进而用第二jt阀24b进行绝热膨胀进行液化后返回到液氢储存槽27内;
50.另外,从氢气冷却器28发出的氢气体的一部分被发送到膨胀涡轮t1、膨胀涡轮t2,通过用两个膨胀涡轮t1、膨胀涡轮t2进行绝热膨胀而产生冷空气后,返回到低压侧氢气体压缩器c2的吐出侧;
51.此外,作为该装置的第二特征,在各氢气体压缩器c1、氢气体压缩器c2的吸入侧设置有氢气冷却器28,该氢气冷却器28用于在各压缩器的外侧冷却氢气体;
52.这些氢气冷却器28使从液化天然气罐10供给的液化天然气和氢气体进行热交换,通过其热交换,在天然气汽化生成ng的同时,利用其气化潜热进行循环氢气体的冷却;这里生成的ng也与上述同样作为氢原料被送入水蒸气改质装置16;
53.根据以上说明的方法及系统,通过将天然气的气化潜热冷能(实际上除了该气化潜热之外,还有气化后的天然气的潜热)有效地利用于氢液化装置20中的氢气体的冷却,通过液化天然气的气化而产生ng、以及氢气可以通过相互辅助来高效地进行双方液化,由此可以飞跃性地提高系统整体的运转效率;
54.具体而言,在上述图2所示的氢液化装置20中,通过利用液化天然气的气化潜热冷却高温侧第一正仲氢转化器23,能够促进氢气体的正仲氢变换来提高氢气的液化效率,不需要对参数第一正仲氢转化器23进行冷却所需的液氮(以前每nm3消耗0.69nm3/h的液氮);
55.如果在现有技术的2级膨胀涡轮的基本周期中卡诺效率为36%,则通过执行由氢气冷却器28进行的冷却,在理论上可以将卡诺效率提高到60%,可以节减约0.6kwh/nm3的动力;此外,通过氢气体的冷却来提高气体密度,取代传统的往返式压缩器,也创造了应用维护费用低、连续运行时间长的离心压缩器的新的技术路线;
56.另外,在图1中,可以根据整体的运转条件等适当地设定全天然气供给量中不经由天然气气化器12直接向氢液化装置20输送的天然气量的比率;
57.另外,设置在氢液化装置20中的热交换部不限于图2的例子,例如能够选择如下形式;
58.图2所示的装置中,在氢气压缩器c1、氢气压缩器c2的上游侧分别设有氢气冷却器28,但如图3所示,该氢气冷却器28也可以设置在氢气压缩器c1、氢气压缩器c2的下游侧;由于在包括氢气压缩器c1、氢气压缩器c2的氢循环线21b中低温氢循环,结果吸入到氢气压缩器c1、氢气压缩器c2中的氢气体由各氢气冷却器28冷却;
59.如图3所示,在氢气压缩器c1、氢气压缩器c2在多个级上串联设置的情况下,也可以与氢气压缩器c1、氢气压缩器c2对应地设置多个氢气冷却器28;
60.在现有技术中,该系统还包括一个液化气槽,以提高气体的效率;例如,在上述图2所示的氢液化装置20中,即使省略了氢气压缩器,也能够通过在该图所示的热交换器hx1中循环氢气和从液化天然气贮槽22排出的ng之间的热交换来冷却循环氢气体。
61.本发明以液化天然气气化生成的天然气为原料制造氢气体,在将该氢气体液化制造液氢时,至少一部分液化天然气的气化潜热用于氢液化的氢冷却因此具有高效制造液氢的效果;天然气以甲烷为主要成分,而且几乎不含硫磺成分,因此具有简化或省略脱硫处理的优点;但是,为了得到这个天然气,必须加温被液化的天然气使之气化,在气化的时候,液化天然气保有的冷能被大量地放出;因此,如果有效利用该液化天然气所持有的冷能,则有望显著提高氢制造效率;与传统的液氢制造方法相比,传统的液氢制造方法需要使用液氮作为氢深冷材料,制造该液氮由于液化的压缩动力大,电力费用高,占制液氢总耗电成本70%以上;
62.本发明以液化天然气气化生成的天然气为原料制造氢气体,在将该氢气体液化制造液氢时,利用液化天然气冷能来冷却和液化循环氮,将深冷液化氮用于氢液化的冷能;其结果是,可以大幅降低液去制造的动力费和电费,并具有设备简单,高效制造液氢的效果;同时由于液氢空气分离装置所达到的温度比天然气温度还低,因此天然气的冷量能得到最
佳的利用,采用天然气冷能进行空气分离不但降低了能耗,而且简化了空分流程,减少了建设费用,同时也将降低了天然气气化的费用。
63.最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其上部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

技术特征:


1.一种低成本高效制备液氢方法,其特征在于:具体为:液化天然气气化生成天然气,天然气制造氢气,氢气冷却液化得到液氢;利用液化天然气冷能来冷却和液化氮,利用液化氮冷能在氢液化过程中用于氢气体的冷却。2.根据权利要求1所述的一种低成本高效制备液氢方法,其特征在于:包括使液化天然气气化而生成天然气的气化工序、从天然气制造氢气体的氢气体制造工序、使氢气体冷却并液化的氢液化工序。3.根据权利要求2所述的一种低成本高效制备液氢方法,其特征在于:还包括使液化天然气气化而生成天然气的天然气气化器(12)、从天然气制造氢气体的氢气制造装置、使氢气体冷却并液化的氢液化装置(20)。4.根据权利要求3所述的一种低成本高效制备液氢方法,其特征在于:在氢液化装置中,在氢气体的液化天然气贮槽(22)对氢气体进行冷却,同时将液化天然气贮槽(22)生成的天然气导入所述氢气制造装置中。5.根据权利要求4所述的一种低成本高效制备液氢方法,其特征在于:所述氢气制造装置包括水蒸气改质装置(16)和氢psa装置(18);天然气与水蒸气改质装置(16)进料口贯通,所述水蒸气改质装置(16)出料口与氢psa装置(18)进料口连接,所述氢psa装置(18)出料口与氢液化装置(20)进料口贯通。6.根据权利要求5所述的一种低成本高效制备液氢方法,其特征在于:还包括液化天然气罐(10),所述液化天然气罐(10)输出端分别与天然气气化器(12)、液化天然气贮槽(22)连通。7.根据权利要求6所述的一种低成本高效制备液氢方法,其特征在于:所述氢液化装置(20)包括液氢生成线(21a)和氢循环线(21b)、所述液化天然气贮槽(22)设于氢液化装置(20)内部,所述氢液化装置(20)还包括第一正仲氢转化器(23)、第一jt阀(24a)、第二jt阀(24b)、第一热交换器(25a)、第二热交换器(25b)、第二正仲氢变换器(26)、液氢储存槽(27)、氢气冷却器(28)、热交换器hx1、热交换器hx2、热交换器hx3、热交换器hx4、氢气压缩器c1、氢气压缩器c2、膨胀涡轮t1、膨胀涡轮t2;所述液氢生成线(21a)用于生产液化氢;所述氢循环线(21b)用于对液化氢生产过程中的氢气进行循环处理。8.根据权利要求7所述的一种低成本高效制备液氢方法,其特征在于:所述氢气压缩器c1、氢气压缩器c2一侧均设置氢气冷却器(28),所述氢气压缩器c1、氢气压缩器c2、氢气冷却器(28)串联。9.根据权利要求7所述的一种低成本高效制备液氢方法,其特征在于:所述液氢生成线(21a)按照流程顺序依次包含热交换器hx1、液化天然气贮槽(22)、第一正仲氢转化器(23)、热交换器hx2、热交换器hx3、热交换器hx4、第一jt阀(24a)、第一热交换器(25a)、第二正仲氢变换器(26)、第二热交换器(25b)、液氢储存槽(27),所述第一正仲氢转化器(23)设于液化天然气贮槽(22)内部;所述第一热交换器(25a)、第二正仲氢变换器(26)、第二热交换器(25b)均设于液氢储存槽(27)内部。10.根据权利要求8所述的一种低成本高效制备液氢方法,其特征在于:所述氢循环线(21b)按照流程顺序依次包含液氢储存槽(27)、热交换器hx4、热交换器hx3、热交换器hx2、氢气压缩器c2、氢气压缩器c1、氢气冷却器(28)、热交换器hx2、热交换器hx3、热交换器hx4、
第二jt阀(24b)、液氢储存槽(27);所述氢气冷却器(28)输出端分别与第二jt阀(24b)、膨胀涡轮t1、膨胀涡轮t2的输入端连接,所述第二jt阀(24b)输出端与液氢储存槽(27)连接,所述膨胀涡轮t1、膨胀涡轮t2的输出端与氢气体压缩器c2的输出端连接。

技术总结


本发明公开了一种低成本高效制备液氢方法,具体涉及液氢生产技术领域。本发明以液化天然气气化生成的天然气为原料制造氢气体,在将该氢气体液化制造液氢时,至少一部分液化天然气的气化潜热用于氢液化的氢冷却因此具有高效制造液氢的效果;天然气以甲烷为主要成分,而且几乎不含硫磺成分,因此具有简化或省略脱硫处理的优点,可以大幅降低液去制造的动力费和电费,并具有设备简单,高效制造液氢的效果;同时由于液氢空气分离装置所达到的温度比天然气温度还低,因此天然气的冷量能得到最佳的利用,采用天然气冷能进行空气分离不但降低了能耗,而且简化了空分流程,减少了建设费用,同时也将降低了天然气气化的费用。同时也将降低了天然气气化的费用。同时也将降低了天然气气化的费用。


技术研发人员:

田口智浩

受保护的技术使用者:

江苏捷思新能源科技有限公司

技术研发日:

2022.09.24

技术公布日:

2023/1/13

本文发布于:2023-03-30 21:29:24,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/4/82555.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:氢气   液氢   热交换器   压缩器
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图