数控机床是一种高精度、高效率的自动化加工设备。尽管数控机床价格昂贵,一次性投资巨大,但仍然为机械制造厂家所普遍采用并取得很好的经济效益,其原因在于数控机床能自动化地,高精度、高质量、高效率地解决中、小批量的加工问题。数控技术、伺服驱动技术的发展及在机床上的应用,为数控机床的自动化、高精度、高效率提供了可能性,但要将可能性变成现实,则必须要求数控机床的机械结构具有优良的特性才能保证。这些特性包括结构的静刚度、抗振性、热稳定性、低速运动的平稳性及运动时的摩擦特性、几何精度、传动精度等。 一、提高机床结构的静刚度
机床结构的静刚度是指在切削力和其他力的作用下,机床抵抗变形的能力。中继机>保健油
机床在加工过程中,受多种外力的作用,包括运动部件和工件的自重、切削力、驱动力、加减速时的惯性力、摩擦阻力等。机床的各部件在这些力的作用下将产生变形,如 各基础 件的弯曲和扭转变形,支承构件的局部变形,固定连接面和运动啮合面的接触变形等。这些
变形都会直接或间接地引起刀具与工件之间产生相对位移,破坏刀具和工件原来所占有的正确位置,从而影响机床的加工精度和切削过程的特性,所以,提高机床的静刚度是机床结构设计的普遍要求。数控机床为获得高效率而具有的大功率和高速度,使它所承受的各种外力负载更加恶劣,而且加工过程的自动化也使得加工误差无法由人工干预来修正和补偿,所以,数控机床的变形对加工精度的影响会更为严重。为了保证数控机床在自动化、高效率的切削条件下获得稳定的高精度,其机械结构应具有更高的静刚度,有标准规定数控机床的刚度系数应比类似的普通机床高 50 %。
推拉活动护栏
1 .合理设计基础件的截面形状和尺寸,采用合理的筋板结构 机床在外力的作用下, 各基础件将 承受弯曲和扭转载荷,其弯曲和扭转变形的大小则取决于基础件的截面抗弯 和抗扭惯性矩 ,抗弯,抗扭惯性矩大,变形则小,刚度就高。表 5-1 列出了在截面 积相同 ( 即重量相同 ) 时,不同截面形状和尺寸的惯性矩。
由表中数据可知:
A在形状和截面积相同时,减小壁厚,加大截面轮廓尺寸,可大大增加刚度;
B封闭截面的刚度远远高于不封闭截面的刚度;
C圆形截面的抗扭刚度高于方形截面,抗弯刚度则低于方形截面;
D矩形截面在尺寸大的方向具有很高的抗弯刚度。
因此,通过合理设计截面形状和尺寸,可大大提高基础件的结构静刚度。
图5-1 所示为 日本森精机 SL 系列数控车床的床身截面,床身导轨倾斜布置,改善了排屑条件,同时截面形状采用封闭式箱体结构,从而加大了床身截面的外轮廓尺寸,使该床身具有很高的抗弯、抗扭刚度。这种倾斜布置的结构为数控车床所普遍采用。
图5-2 所示为卧式加工中心普遍采用的框式立柱结构。从正面看,立柱截面成封闭框形,轮廓尺寸大,从而保证以高扭转刚度承受切削扭矩产生的扭转载荷。从俯视截面看,两个立柱截面形状为矩形,矩形尺寸大的方向正是因切削力作用产生大的弯曲载荷的方向。因而这种结构具有很高的刚度。
合理布置基础件的筋板可以提高静刚度,表5-2 给出了立柱的几种不同筋板布置时的相对静刚度。从表中可知:
A纵向筋板能提高立柱的抗弯和抗扭刚度,提高抗扭刚度效果更为显著;
B对角线斜置筋板和对角线交叉筋板对提高立柱的刚度更为有效。智能控制模块
表5-2 不同筋板布置时立柱的静刚度对比
压电陶瓷驱动器 图5-3 所示为两种立式加工中心立柱的横截面图。由于该立柱承受弯扭组合载荷,故截面采用接近正方形的封闭外形,为了进一步提高抗弯、抗扭刚度,内部采用了斜方双层壁( 相当于斜纵向筋板) 和对角线交叉筋板。所以,这两种立柱都有很高的抗弯、抗扭刚度。
(a)XK-716 型立式加工中心; 保安接线排(b)STAMA MCll8 型立式加工中心
图5-3 立柱横截面
合理布置筋板还可提高基础件的局部刚度,图5-4 所示为日本三井精机 HS 6A 型超精密重切削卧式加工中心采用的床身结构。该床身为整体式结构,截面为封闭箱形结构,整体结构刚度很高。为了加强导轨连接的局部刚度,采用两条成 Y 形的斜筋支撑导轨。