随着处理器发热量的不断提高,很多有助于散热的新兴技术也飞速发展。如果要深入了解一款散热器的性能必须了解其原理,针对目前主流散热器所采用的技术,驱动之家评测室分门别类,为您带来散热专题之原理篇,带您走进散热器的奥妙世界。 功耗是CPU最为重要的参数之一。其主要包括TDP和处理器功耗
TDP是反应一颗处理器热量释放的指标。TDP的英文全称是“Thermal Design Power”,中文直译是“热量设计功耗”。TDP功耗是处理器的基本物理指标。它的含义是当处理器达到负荷最大的时候,释放出的热量,单位未W。单颗处理器的TDP值是固定的,而散热器必须保证在处理器TDP最大的时候,处理器的温度仍然在设计范围之内。
处理器的功耗:是处理器最基本的电气性能指标。根据电路的基本原理,功率(P)=电流(A)×电压(V)。所以,处理器的功耗(功率)等于流经处理器核心的电流值与该处理器上的核心电压值的乘积。
处理器的峰值功耗:处理器的核心电压与核心电流时刻都处于变化之中,这样处理器的功耗也在变化之中。在散热措施正常的情况下(即处理器的温度始终处于设计范围之内),处理器负荷最高的时刻,其核心电压与核心电流都达到最高值,此时电压与电流的乘积便是处理器的峰值功耗。
处理器的功耗与TDP 两者的关系可以用下面公式概括:
处理器的功耗=实际消耗功耗+TDP
熔铜炉实际消耗功耗是处理器各个功能单元正常工作消耗的电能,TDP是电流热效应以及其他形式产生的热能,他们均以热的形式释放。从这个等式我们可以得出这样的结论:TDP并不等于是处理器的功耗,TDP要小于处理器的功耗。虽然都是处理器的基本物理指标,但处理器功耗与TDP对应的硬件完全不同:与处理器功耗直接相关的是主板,主板的处理器供电模块必须具备足够的电流输出能力才能保证处理器稳定工作;而TDP数值很大,单靠处理器自身是无法完全排除的,因此这部分热能需要借助主动散热器进行吸收,散热器若设计无法达到处理器的要求,那么硅晶体就会因温度过高而损毁。因此TDP也是对散热器的一个性能设计要求。
人们也习惯用热阻抗值来对散热器的性能进行标识
热阻抗值RCJ
热阻抗值是保证CPU在一定的环境温度下(TJ=A℃)执行规定的程序(如P4 Maxpower 6.0 100%),CPU温度保持在规定的最高温度以下(Tc
Tc-Tj=TDP× RJC
等式左边为一定值,对于一款散热器显然是热阻抗值越小,就可以使P值更大,也就是可以承载更大TDP的CPU散热,也就说明性能越好。
对于散热器,我们可以列出如下的等式:
P=H*A*η*△T
P:散热片与周围空气的热交换总量(W);
H:散热片的总热传导率(W/CM2*℃),由辐射及对流两方面决定;
加热膜A:散热片表面积(CM2);
η:散热片效率,由散热片的材料及形状决定;
△T:散热片的最高温度与周围环境温度之差(℃)
炉温控制系统
[散热原理——散热方式]
散热就是热量传递,而热的传递方式有三种:传导、对流和辐射。传导是由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量的方式,CPU和散热片之间的热量传递主要是采用这种方式,这也
是最普遍的一种热传递方式。对流是指气体或液体中较热部分和较冷部分通过循环将温度均匀化,目前的散热器在散热片上添加风扇便是一种强制对流法,电脑机箱中的散热风扇带动气体的流动也属于"强制热对流"散热方式。辐射顾名思义就是将热能从热源直接向外界发散出去,该过程与热源表面颜、材质及温度有关,辐射的速度较慢,因此在散热器散热中所起到的作用十分有限(辐射可以在真空中进行)。这三种散热方式都不是孤立的,在日常的热量传递中,这三种散热方式都是同时发生,共同发挥作用的。
任何散热器也都会同时使用以上三种热传递方式,只是侧重有所不同。对于CPU散热器,依照从散热器带走热量的方式,可以将散热器分为主动散热和被动散热。前者常见的是风冷散热器,而后者常见的就是散热片。进一步细分
散热方式,可以分为风冷,液冷,半导体制冷,压缩机制冷,液氮制冷等等。
风冷散热是最常见的,而且简单易用,就是使用风扇带走散热器所吸收的热量。具有价格相对较低,安装方便等优点。但对环境依赖比较高,例如气温升高以及超频时其散热性能就会大受影响。
液冷是使用液体在泵的带动下强制循环带走散热器的热量,与风冷相比具有安静、降温稳定、对环境依赖小等等优点。液冷的价格相对较高,而且安装也相对麻烦一些。同时安装时尽量按照说明书指导的方法安装才能获得最佳的散热效果。
半导体制冷
“N.P型半导体通过金属导流片链接,当电流由N通过P时,电场使N中的电子和P中的空穴反向流动,他们产生的能量来自晶管的热能,于是在导流片上吸热,而在另一端放热,产生温差”——这就是半导体制冷片的制冷原理。只要高温端的热量能有效的散发掉,则低温端就不断的被冷却。在每个半导体颗粒上都产生温差,一个制冷片由几十个这样的颗粒串联而成,从而在制冷片的两个表面形成一个温差。
oadm利用这种温差现象,配合风冷/水冷对高温端进行降温,使得制冷片的散热效果强劲,但是让制冷片全速运作的前提是供电必须要稳定(一版要几时W的功率),或者你需要为制冷片单独设立一个供电设备,这样成本较高,而且如果高温端的散热不到位的话也比较危险。
优点:能使温度降到非常理想的室温以下;并且可以通过使用闭环温控电路精确调整温度,温度最高可以精确到0.1度;可靠性高,使用固体器件致冷,不会对CPU有磨损;使用寿命长。
缺点:CPU周围可能会结露,有可能会造成主板短路;安装比较困难,需要一定的电子知识。比较保险的方法是让半导体制冷器的冷面工作在20℃左右为宜
压缩机制冷:压缩机制冷其实已经是我们比较熟悉的方式了。在日常生活中,冰箱,空调等制冷设备
氢氧化钙生产都是采用压缩机制冷方式。应用在个人电脑上,主要是将吸热部分集中在CPU区域。压缩机制冷一般可以维持在零下100摄氏度左右。相对液氮的温度要高了不少,并且通过妥善的安装,电脑硬件可以长期稳定的在机箱中运行,虽然噪音可能不小。
干冰、液氮制冷:干冰与液氮制冷都是依靠压缩或冷却气体在常温下气化,迅速吸收大量的热来制冷。这两种极端的散热方式可以带来最为顶级的散热效果。是骨灰级超频玩家降温的必用手段。但同时这种方法也是非常危险的。因为快速的温度下降导致的温差会发生结露,容易导致主板等短路。
石墨导热:由于具备了等向性(anisotropic)的特性,石墨在导热时是根据一定的方向来流动的。其实在这样的特性下,石墨就很好区别于一般风冷材质的铜和铝,因为这两种金属都不具备这种属性,所以也无法用它们来控制热的传输方向。所以是使用石墨散热技术制造的产品就可以按着需要的方面来依次的进行热传导。
优点
门窗封条散热片体积更小更轻
一片具有弹性而且可以定型小小的石墨片,经过了切割之后几乎可以应用在各种设备上。它的最大传导系数为
500W/mk(比热管要低)。而重量比铜轻了80%。并且比铝也轻了30%。
缺点:
石墨的脆弱性
虽然石墨散热技术可以用铝箔包裹以保持其外形,但是脆弱本身是无法消去的。由于我们在使用电脑和拆装一些电脑配件的时候,经常也不小心的将电脑配件撞击。这样的意外承受压力也是产品本身需要考虑的。
成本问题
对于任何产品来说,成本问题都无法解决。我们之前所听说过的石墨散热技术,一般是来自于比较昂贵的医疗器材上。石墨技术无疑是一个不错的医疗散热材料。但由于应用于这些非常昂贵的医疗器材上也意味着其昂贵。
液态金属导热:这种冷却新技术利用镓和铟的混和液体作为散热剂,混和金属在10度时为液态。这种冷却剂导热性能比水高65倍,比空气导热性高1600倍,因此液体金属吸收热量效率极高。
虽然液态金属导热性极佳,但是其吸收的热量难以向外接释放,虽然液态金属能够带来散热效率提升,但是远低于预期。
[散热原理——散热器材质]
风冷散热器一般由散热片和风扇构成,这种散热方式的原理很简单:CPU产生的热量通过热传导传递到散热片,风扇高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走,只有极少部分的热量通过辐射方式直接散发。风冷散热器的制造成本低,可操作性强,使用起来也方便安全,所
以成为了我们最常用的散热方式。我们这次评测也将围绕风冷散热器来进行。
CPU的Die通常不到2平方厘米,但功耗却达到几十、上百瓦,如果不能及时将热量传导出去,热量一旦在Die中积聚,将会导致严重的后果。散热片所要做的的就是要将聚集CPU Die中的热量传导到更大的热导体并通过巨大的散热面积与空气进行热交换。在这个过程中,散热片的底座是与CPU接触并聚集热量的地方,而鳍片则是热量传导的终点,最终将热量散失到空气中。所以,散热器的底座和鳍片是最值得重视的两个部分。
首先是散热器底座在短时间内能尽可能多的吸收CPU释放的热量,即瞬间吸热能力,只有具备高热传导系数的金属才能胜任。其次是散热器本体应当具备足够的储热能力,即较大的热容量,通常承担这个任务的是鳍片。散热器材质是指散热器本体所使用的具体材料。对于金属导热材料而言,比热和热传导系数是两个重要的参数。
比热的定义为:单位质量下需要输入多少能量才能使温度上升一摄氏度,单位为卡/(千克×°C),数值越大代表物体的容热能力越大。以下是几种常见物质的比热表:
热传导系数的定义为:每单位长度、每K,可以传送多少W的能量,单位为W/mK。其中“W”指热功率单位,“m”代表长度单位米,而“K”为绝对温度单位。该数值越大说明导热性能越好。以下是几种常见金属的热传导系数表:
我们看到,水的比热远高于金属,有更强的容热能力,这也正是水冷有出散热效果的原因。而普通风冷散热器自然要选择金属作为散热器的材料。我们希望所选用的材料同时具有高比热和高热传导系数,铝的这两个参数都居于前列,是一个相当不错的选择。由于铝具有密度小,延展性好,易于加工等特点,所以目前绝大多数散热器都采用铝作为主要材料。但纯铝硬度不足,切削性能差,所以在实际生产中,厂商门为了保证产品有适当的硬度,都采用铝合金来制造实际产品(铝约占总成分的98%)。当然掺杂了其他金属会导致散热性能有所降低,上面列举了几款散热器常用铝合金的导热性
能,铝优良的导热能力在铝合金身上基本上得到保留。而铜的传导系数颇高,热传导能力非常强。
而铜和铝合金二者同时各有其优缺点。铜的导热性好,但价格较贵,加工难度较高,重量过大,且铜制散热器热容