引言 随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。
一、LLC谐振变换器原理
图一和图二分别给出了LLC谐振变换器的电路图和工作波形。图一中包括两个功率MOSFET(S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感Lm,Lm在某个时间段也是一个谐振电感,因此,在LLC谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls和激磁电感Lm;半桥全波整流二极管D1和D2,输出电容Cf。LLC变换器的稳态工作原理如下:三相混合步进电机 1)〔t1,t2〕当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体内二级管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。 2)〔t2,t3〕当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。 3)〔t3,t4〕当t=t3时,S1仍然导通,而D1与D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中Lm>>Ls,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。 4)〔t4,t5〕当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体内二级管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此,只 有Ls和Cs参与谐振。
5)〔t5,t6〕当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压箝位,而不参与谐振。
6)〔t6,t7〕当参红祛瘀散结胶囊t=t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中Lm>>Ls,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。
通过上面的详细分析,对LLC软开关型变换器的工作原理及其特性有了一定的了解,下面介绍如何设计谐振腔之元件,进一步加深对它们的认识。
二、 LLC谐振腔之元件设计
谐振腔之元件包括功率开关管MOSFET,谐振电容器Cr,谐振电感Lr和隔离变压器T1,一般情况谐振电感Lr是采用隔离变压器T1的漏感。
1.匝比:
2.谐振电容器Cr :
3.谐振电感Lr:
4.变压器初级感量Lm:
6.初级电流有效值:
说明:
Vin-nor, Vin-min, Vin-max :输入电压额定值、最小值和最大值;
Vo-nor, Vo-min, Vo-max :输出电压额定值、最小值和最大值;
Io :输出电流额定值;在普通条件下设计者给定的开关频率
fo:输出电流额定值;在普通条件下设计者给定的开关频率
fmin :设计者给定的最小开关频率
Vc-max :振荡电容Cs上最大允许电压
n :变压器初级与次级的变比
Cs :振荡电容
Ls :振荡电感
Lm :激磁电感
fmax :最大开关频率
Ip,RMS :初级电流有效值
三、 L6598\L6599芯片资料
1、L6599 芯片介绍
意法半导体(ST)日前推出一个专门为串联谐振半桥拓扑设计的双终接控制器芯片L6598,该芯片支持保护全面和高可靠性的电源设计,特别适用于液晶电视和等离子电视的电源、便携电脑和游戏机的高端适配器、80+ initiative-兼容ATX电源和电信设备开关电源。
L6599在上一代产品L6598的基础上新增多种功能,如直接连接功率因数校正器(PFC)的专用输出、两级过流保护(OCP)、自锁禁止输入、轻负载突发模式操作和一个上电/断电顺序或欠压保护输入。
新产品工作在50%互补性占空比下,插入一个固定的死区时间,以确保软开关操作。支持高频开关(最高500kHz),能效高,电磁干扰(EMI)辐射低。为了采用自举方法驱动上桥臂开关,新产品整合了一个能够承受600V以上电压的高压浮动结构和一个同步驱动式高压横向双扩散金属氧化物半导体(LDMOS)器件,节省了一个外部快速恢复自举二极管。
L6599为两个栅驱动器提供一个输出电流0.6A和输入电流1.2A的典型峰值电流处理能力,使设计人员能够利用一个外部可编程振荡器设定工作频率。非线性软启动可防止涌流,最大限度抑制输出电压过冲。这个器件还有一个可控制的突发模式操作,能够大幅度降低在轻负载和无负载条件下的平均开关频率和相关损耗。
利用这个谐振控制器,设计人员甚至可以在功率校正系统内满足节能要求。在突发模式操作期间,一个专用输出使IC能够关断功率因数校正器(PFC)的预稳压器,以降低这部分电路的无负载功耗。
L6599的其它重要特性包括低功耗(<30mW)、压摆率最高50V/ns的无闩锁操作保证和一个“不自锁”禁用输入,高性能过流保护(OCP)功能提供全面的过负载和短路保护。新增的一个自锁禁用输入让过热保护(OTP)和/或过压保护(OVP)的实现变得容易。 L6599有三个产品型号:L6599N采用PDIP16封装,L6599D和L6599DTR采用SO16N封装。新产品现已投产,订购25,000件时的产品单价为1.20美元。
2、芯片与典型方框图
3、PIN脚功能
N.O | 名称 | 功能 |
1 | Css | 软启动。这个Pin与地之间接有一个电容,与RFmin之间接有一个电阻。调节芯片软启动的最大振荡频率中的固定时间。内部开关在每次芯片关闭时(Vcc<UVLO, LINE<1.25 V or >6 V, DIS>2 V,ISEN>1.5 V, DELAY>2 V)对电容放电,为下次启动进行软启动准备。 |
2 | DELAY | 延迟保护时间设定。通过电容电阻并联后到地。可调节芯片在过流的保护时间与去掉故障的重新恢复时间。当Isen检测电压超过0.8 V,内部对电容进行150μA恒流充电,电容也通过电阻进行放电,平常维持在2V左右。当电压超过3.5V,内部关闭对电容的充电,同时芯片关闭振荡,停止开关工作,达到电路保护作用,当电容通过电阻放电至0.3V时,芯片重新工作。 |
3 | CF | 定时电容。通过内部电流源进行充放电,确定工作的开关频率。 |
4 | Rfmin | 最小振荡频率设定。提供一个2V基准电压和一个接地的电阻来设定最小振荡频率。连接电压反馈回路中的光耦器,还可以根据输出电压大小调整振荡频率。光耦器必须由一个电阻连接,这个电压确定最大工作频率。与软启动端,接有R-C回路,用于启动时的振荡频率调整,达到软件启动功能,减少启动浪涌电流。 |
5 | STBY | 待机模式(脉冲工作模式设定)。通过回馈回来的电压与内部基准(1.25V)比较,当低于基准电压时,进行待机模式,要恢复正常模式,需要高于基准50 mV。可以通过外接电阻、接插口来设定其进行待机模式时的输出电流值。 |
6 | Isen | 电流检测端。通过一个电阻或一个电容进行初级电流的无损检测。此功能不能进行单周期控制,所以需要将电压信号转化成平均电流信号。当电压值超过0.8V(可能有50 mV的回差),Pin1的软启动电容通过内部放电,则振荡频率会上升,因此限制了电源的输出功率。 |
7 | Line | 输入限值检查。通过电阻分压结构接到AC或DC高压端,电容是用来旁路噪声干扰。当电压低于1.25V时,关闭(不锁定)IC,对软件启动电容放电。重新恢复工作,电压需要大于1.25V。内部比较器具有15μA迟滞作用。正常工作一般将此电压设在1.25-6V之间。 |
8 | DIS | 故障锁死。内部连接一个比较器,当电压超过1.85V时关闭IC,能耗降低到启动前的水平。不用可以直接接地。 |
9 | PFC_STOP | PFC关闭控制端。正常时为开路,在待机时,有意关闭PFC控制器,降低芯片的损耗(DIS>2 V, ISEN>1.5 V, LINE>6 V and STBY<1.25V.)。当DELAY电压超过2V和后面开路引起电压低于0.3V,也会启动此功能。不使用可以开路此引脚。 |
10 | GND | 接地端 |
11 | LVG | 低端驱动输出端。接半桥电路的下管,与地之间具有拉0.3 A min,推0.8 A min的驱动能力。 |
12 | VCC | 电源供电端。主要供IC中的信号回路和下管驱动。有时需要接一个电容(0.1 μF typ.)到地,以获取干净的电源电压。 |
13 | N.C | 高压空脚。该引脚没有内部连接,是用来隔离高压引脚用。符合安规要求(PCB上的爬电距离) |
14 | OUT | 高端驱动输出公共端 |
15 | HVG | 高端驱动输出端。接半桥电路的上管,与Pin14之间具有拉0.3 A min,推0.8 A min的驱动能力。内部与Pin14之间有一个电阻确保电压不浮动。 |
16 | VBOOT | 高端驱动自举电压输入端。与Pin14 脚用一个电容连接,具有改善上、下管驱动特性,内部具有专利技术。 |
| | |
4、典型电源系统图
分PFC、谐振半桥部分。
5、振荡器
振荡频率由定时元件CF选择值决定。Pin3连接一个精准的2V基准电压输出2mA或更大的
电流源。以产生更高的频率。
以上网络,包函三部分:
A、最小振荡频率:一个电阻RFmin连接Pin4与地之间,确定电路最小工作频率。
B、最大振荡频率: 一个电阻RFmax连接Pin4与光耦(C-E极)之间,光耦调整通过的电流,即调整振荡频率,达到输出电压的调整目的。在光耦完全饱和情况下,RFmax确定最大工作频率。
C、软启动:一个RC电动开启天窗串联电路(Css+Rss),产生频率移动,达到软启动功能。
工作频率最大值fmax发生在最大输入电压最小输出负载,fmin发生在最小输入电压最大输出负载。RFmin、RFmax的选取,先要确定工作最大最小频率。
振荡器波形图
HB为半桥中间点电压,在低边MOSFET关闭时,HB快速上升,并通过自举电容到Pin16,以提供高边MOSFET开启的电压。
6、工作在轻载或无载时
谐振半桥电路在工作于轻载时或所有负载变轻时,工作频率会升为最大值。为使输出电压受控,需要持续一定的工作脉冲,尽量减小变压器磁化电流,以减少待机功耗。
为克服此问题,L6599工作于间歇状态(触发模式)。输出一串很少开关周期后长时间使MOSFET关闭状态,这样平均的工作频率很低,平均功耗就小。
这个触发模式利用了Pin5(STBY):通过回馈回来的电压与内部基准(1.25V)比较,当低于基准电压时,进行待机模式,要恢复正常模式,需要高于基准50 mV。可以通过外接电阻、接插口来设定其进行待机模式时的输出电流值。
四、L6599的工作流程
详细了解L6599的各引脚功能及基本应用后,下面以JSK-4168-081原理图介绍L6599的工作流程。
1、L6599供电回路
5Vsb开关变压器T2B绕组电压经D15整流,Q9、ZD5稳压后输出Vcc1(14V左右),供给PFC芯片(FAN7530MX Pin8)工作电压,并通过Q7、ZD9稳压后输出Vcc2(12V左右)
供给L6599 Pin12led贴片模组工作电压。OCP、OVP、ON/OFF信号通过光耦IC5控制Q9的电压是否输出进而控制PFC、LLC电路是否工作来实现过压保护、过流保护、开关机功能。
2、L6599的启动
| Pin12加上Vcc电压后,给Pin1(CSS)外接电容装载机称重系统C13充电,此时C13可视为短路,R36与R32并联,电阻减少,L6599的振荡频率升高,电源功率下降,当C13充满电时,此时C13可视为开路,振荡频率由 R32决定,振荡频率降低,电源输出正常,由此实现变频软启动功能。同时,VDC通过R20、R21、R22串联电阻及R30分压输入Pin7(Line),R30上并联的电容用来旁路噪声干扰。Pin7(Line)电压低于1.25V关闭IC,高于1.25V低于6V时,IC正常工作,通过对VDC的电压检测,实现欠压保护功能。 IC完成软启动后,内部振荡器开始振荡,在Pin15(HVG)与Pin11(LVG)输出如图所示的两个占空比接近50%的脉冲,驱动MOS管开始工作。 |
软启动电路 |
| |
3、冰车L6599稳压原理
次级电压通过取样电阻加在光耦(IC6)内发光管上,并与ICS1的基准电压进行比较,ICS1的稳压值由上偏电阻RS9(或RS8)和下偏电阻RS10决定,稳压值由此公式算得:
Vo=[RS9/RS10+1]*2.5V
当负载由满载转向空载时,引起输出电压上升,ICS1(TL431)R点的电压将上升,而R点的电压是稳定在2.5V的,这将引起AK间流过的电流增大,光耦(IC6)内发光管上通过的电流增大,光耦(IC6)内光敏管上流过的电流也增大,光耦(IC6)内光敏管相当于一个可变电阻,与R34、R33串联起来接到Pin4(RFMIN),此时光耦(IC6)内光敏管电阻变小,引起IC振荡频率升高,使输出电压下降,反之,当负载由空载转向满载时,输出电压降低,反馈到Pin4(RFMIN)引起IC振荡频率降低,调节输出电压升高,实现了稳压的目的。
4、L6599的SCP保护及次级OCP保护
当T1次级短路时,引起输出电压降低,这一电压变化通过光耦IC6反馈到L6599的Pin4(RFMIN),引起6599振荡频率降低,由于此时光耦(IC6)内光敏管的电阻相当于开路,振荡频率大大偏离LLC谐振电路的谐振点,C8上的振荡电压急剧增大,通过C9、R28、R29,D6、D7全波整流输入到Pin6(Isen),当Isen>0.8V时,Pin2(Delay)对C14充电,C14也对R37放电, 同时IC内部对Pin1(VSS)软启动电容放电,引起工作频率上升(功率下降),Pin2(Delay)反馈电压急速上升到3.5V,内部关闭对电容充电同时芯片关闭振荡,停止开关工作,延迟保护时间由Pin2(Delay)外接电阻R37(Rdelay)和外接电容C14 (Cdelay)决定。