2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)

阅读: 评论:0

绝密启用前
2019年普通高等学校招生全国统一考试(全国2卷)
理科数学
本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x2﹣5x+6>0},B={x|x﹣1<0},则AB=(  )
A.(﹣∞,1)    B.(﹣2,1)    C.(﹣3,﹣1)    D.(3,+∞)
2.(5分)设z=﹣3+2i,则在复平面内对应的点位于(  )
A.第一象限    B.第二象限    C.第三象限    D.第四象限
3.(5分)已知=(2,3),=(3,t),||=1,则=(  )
A.﹣3    B.﹣2    C.2    D.3
4.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为RL2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:+=(R+r
α.由于α的值很小,因此在近似计算中≈3α3,则r的近似值为(  )
A.R    B.R    C.R    D.R
5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是(  )
A.中位数    B.平均数    C.方差    D.极差
6.(5分)若ab,则(  )
A.lnab)>0    B.3a<3b    C.a3b3>0    D.|a|>|b|
7.(5分)设αβ为两个平面,则αβ的充要条件是(  )
A.曲轴设计α内有无数条直线与自救手环β平行   
B.α内有两条相交直线与β平行   
C.αβ平行于同一条直线   
D.αβ垂直于同一平面
8.(5分)若抛物线y2=2pxp>0)的焦点是椭圆+=1的一个焦点,则p=(  )
A.2    B.3    C.4    D.8
9.(5分)下列函数中,以为周期且在区间()单调递增的是(  )
A.fx)=|cos2x|    B.fx)=|sin2x|    C.fx)=cos|x|    D.fx)=sin|x|
10.(5分)已知α∈(0,),2sin2α=cos2扫地机器人方案α+1,则sinα=(  )
A.    B.    C.    D.
11.(5分)设F为双曲线C=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2a防化手套2交于PQ两点.若|PQ|=|OF|,则C的离心率为(  )
A.    B.    C.2    D.
12.(5分)设函数fx)的定义域为R,满足fx+1)=2fx),且当x(0,1]时,fx)=xx﹣1).若对任意x(﹣∞,m],都有fx)≥﹣,则m的取值范围是(  )
A.(﹣∞,]    B.(﹣∞,]    C.(﹣∞,]    D.(﹣∞,]
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个
车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为     
14.(5分)已知fx)是奇函数,且当x<0时,fx)=﹣eax.若fln2)=8,则a     
15.(5分)△ABC的内角ABC的对边分别为abc.若b=6,a=2cB,则△ABC的面积为     
16.(5分)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有     个面,其棱长为     
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1
(1)证明:BE⊥平面EB1C1
(2)若AEA1E,求二面角BECC1的正弦值.
18.(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求钢丝铠装电缆PX=2);
(2)求事件“X=4且甲获胜”的概率.
19.(12分)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3anbn+4,4bn+1=3bn
an﹣4.
(1)证明:{an+bn}是等比数列,{anbn}是等差数列;
(2)求{an}和{bn}的通项公式.
20.(12分)已知函数fx)=lnx
(1)讨论fx)的单调性,并证明fx)有且仅有两个零点;
(2)设x0fx)的一个零点,证明曲线ylnx在点Ax0lnx0自动排焊机)处的切线也是曲线yex的切线.
21.(12分)已知点A(﹣2,0),B(2,0),动点Mxy)满足直线AMBM的斜率之积为﹣.记M的轨迹为曲线C

本文发布于:2023-05-22 16:01:01,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/4/109610.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:比赛   评分   证明   使用   正方体   答题   原始
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图