1.本发明涉及
故障预测技术领域,具体为基于数据分析的配电开关设备运行故障预测系统及方法。
背景技术:
2.电力系统中存在大量的开关,由于开关对电网的稳定起到重要的作用,因此必须时时刻刻关注开关的是否存在故障,并对存在故障隐患的开关进行替换,以保障电网的安全,随着移动互联网的广泛普及以及监测技术的发展,可以通过红外测温的技术实时获取开关的温度数据,以实现对开关运行的实时监测;但有技术中对电力系统开关的监测只能检测到温度异常但没有预警功能,从而导致无法预测开关故障的发生,容易导致配电设备损坏或者电力网络断线,对生产和生活造成较大的损失与不便;针对上述技术问题,本技术提出一种解决方案。
技术实现要素:
3.本发明中,通过采集开关设备启动、运行和关闭三中不同时段的温度
曲线,以不同的权重配比来综合反映开关的状况,能够更好的对开关的运行状态作出判断,从而更加准确的预测开关发生故障的概率,通过采集温度和
湿度两种参数数据,使得在通过温度分析开关的老化状态时,能够将湿度所带来的影响排除,获取排除温度影响后的实际老化状态,更加真实准确的反映出开关老化状态,防止因为湿度原因导致系统出现故障错误预测,在未被预测的故障发生后,能够通过学习优化
单元对故障发生时的曲线进行分析记录,生成易发故障曲线,从而在后续的使用中将易发故障曲线也纳入分析单元对开关状态评估的步骤中,使得系统在不断的使用中自发完善,进一步提高预测的准确程度,解决电力系统开关的监测只能检测到温度异常但没有预警功能,从而导致无法预测开关故障的发生,容易导致配电设备损坏或者电力网络断线的问题,而提出基于数据分析的配电开关设备运行故障预测系统及方法。
4.本发明的目的可以通过以下技术方案实现:基于数据分析的配电开关设备运行故障预测系统,包括数据采集单元、预处理单元、分析单元、结果输出单元、结果反馈单元、学习优化单元和数据库;所述数据采集单元用于以一定的时间间隔采集配电开关设备在运行中的温度、湿度数据,同时记录下采集温度时对应的时间点数据,将所采集到的数据发送至预处理单元;预处理单元在收到数据采集单元发送的温度湿度信号后,以采集温度时的时间点为x轴,以温度数据为y轴,作出时间-温度曲线,同时对曲线进行平滑处理,剔除不合理的数据,将采集湿度时的时间点作为x轴,以湿度作为y轴,作出时间-湿度曲线,同时对曲线进行平滑处理,标记脱离曲线的突变数据,预处理单元将处理后的时间-温度曲线、时间-湿度曲线以及湿度曲线上的突变数据发送至分析单元;
分析单元接收到时间-温度曲线后,从数据库中调取所存储的良好运行状态下的时间-温度对照曲线,将时间-温度曲线与时间-温度对照曲线进行叠加比较,分析单元在收到时间-湿度曲线后,从数据库中调取所存储的良好运行状态下的时间-湿度对照曲线,将时间-湿度曲线与时间-湿度对照曲线进行叠加比对分析,并对比较结果进行故障预测,将故障预测结果发送至结果输出单元;结果输出单元收到故障预测信号后,对信号进行显示;结果反馈单元用于记录未被预测而发生的故障,并将故障信号发送至分析单元,分析单元收到故障信号后追溯故障发生时的时间-温度曲线以及时间-湿度曲线,并将曲线发送至学习优化单元;学习优化单元收到分析单元发出的曲线后,通过与数据库中的良好运行状态下的曲线进行对比分析,完成故障预测的优化,并将优化结果同时发送至数据库与分析单元。
5.作为本发明的一种优选实施方式,所述数据采集单元进行时间采集分为三个时间段,第一个时间段为开关闭合前两秒至开关闭合后两秒,第二个时间段为开关闭合后两秒至开关断开前,第三个时间段为开关断开前两秒至开关断开后两秒,第一时间段与第三时间段以每秒钟一次的频率对温度数据和湿度数据进行采集,第二时间段以每30秒一次的频率对温度数据和湿度数据进行采集,并将采集到的时间、温度和湿度信号发送至预处理单元。
6.作为本发明的一种优选实施方式,所述预处理单元对第一时间段的时间、温度和湿度数据进行处理,生成第一时间段的时间-温度曲线和时间-湿度曲线,所述预处理单元对第二时间段的时间、温度和湿度数据进行处理,生成第二时间段的时间-温度曲线和时间-湿度曲线,所述预处理单元对第三时间段的时间、温度和湿度数据进行处理,生成第三时间段的时间-温度曲线和时间-湿度曲线;预处理单元对上述三组时间-温度曲线进行平滑处理,若某一点的温度与其相邻的两个数据点均出现断崖式上升或下降,则标记为不合理数据,若某一点与其前一个数据点相比出现温度断崖式下降,则也标记为不合理数据,对不合理数据进行剔除后连接剔除点两侧的曲线,并再次重复上述步骤对连接后的曲线进行再次处理,直至无不合理数据出现,并将处理后的时间-温度曲线与时间-湿度曲线发送至分析单元。
7.作为本发明的一种优选实施方式,所述分析单元在将预处理单元发送的曲线与数据库中调取的良好运行状态下的对照曲线进行叠加比较,以时间轴作为基准进行重合,时间-温度曲线上的温度值记为tn,时间-温度对照曲线上的温度值记为tn,将两条曲线上的温度值的差值分析,得到开关温度异常特征值k,;三组不同时段的时间-温度曲线均通过此方法进行计算,分别得到三组不同的开关温度异常特征值k1、k2和k3,其中y为权重系数,三组不同时段的y分别为y1、y2和y3,其中y1+y2+y3=1;分析单元对时间-湿度曲线与时间-湿度对照曲线以时间轴为基准进行重合,将时间-湿度曲线上的湿度值记为rhn,时间-湿度对照曲线上的湿度值记为rhn,将两条曲线上
的湿度值进行差值分析,得到环境干扰特征值j,,其中x为干扰系数,x为固定值;三组不同时间段的时间-湿度曲线均通过此方法得到三组不同的环境干扰特征值j1、j2和j3,通过开关温度异常特征值k和环境干扰特征值j计算得到开关故障特征值m,;所述分析单元从数据库中调取开关故障特征值阈值mmax,将m与mmax进行比较,若m≥mmax,则对输出单元发出开关异常信号,若m<mmax,则对输出单元发出开关正常信号。
8.作为本发明的一种优选实施方式,所述结果输出单元收到开关异常信号后,在屏幕上显示“开关待更换”文本,所述结果输出单元收到开关正常信号后,不作出反应。
9.作为本发明的一种优选实施方式,所述结果反馈单元记录到开关发生故障时,若结果输出单元未收到开关异常信号,则将此次故障定义为未被预测的故障,结果反馈单元记录到未被预测的故障后,将故障信号发送至分析单元,分析单元根据未被预测的故障发生时间,调取出包含该时间点的三个时间段的时间-温度和时间-湿度曲线,将其标记为故障信号曲线,并将该故障信号曲线发送至数据库进行储存,当后续每次发生未被预测的故障时,将故障信号曲线发送至数据库储存的同时向分析单元发送二次分析信号,分析单元在收到二次分析信号后,将最新发生的故障信号曲线与往期故障信号曲线一一比对,若存在相类似的故障信号曲线重复出现2次及以上,则将其标记为易发故障曲线。
10.作为本发明的一种优选实施方式,所述分析单元在进行下一次曲线叠加比对分析时,增加与数据库中存储的所有易发故障曲线的比对分析过程,并根据时间-湿度曲线以及时间-温度曲线与易发故障曲线的贴合程度分析开关发生故障的几率,若时间-温度曲线和时间-湿度曲线均与易发故障曲线贴合程度小于等于贴合程度阈值,则向结果输出模块发出往期故障信号,若时间-温度曲线和时间-湿度曲线中的任意一条与易发故障曲线贴合程度大于贴合程度阈值,则不作出反应,结果输出模块收到往期故障信号后,在屏幕上显示“往期故障,开关待更换”文本。
11.该基于数据分析的配电开关设备运行故障预测方法,包括以下步骤:步骤一:通过数据采集单元采集配电开关设备在运行过程中的温度、湿度以及对应的时间数据,并将该数据发送预处理单元进行预处理,预处理单元将各种数据处理成为曲线的形式,并将曲线发送至分析单元中;步骤二:分析单元通过将曲线与对照曲线进行分析比对,通过数值计算、阈值比对的方式判定开关设备的当前运行状况与良好工况下的差距,并对是否需要更换开关设备作出判断;步骤三:当未被预测的故障发生时,通过结果反馈单元与数据库进行记录,并通过分析单元对后续发生的故障进行比对,将出现两次及以上的故障曲线标记为易发故障曲线,将易发故障曲线纳入对照曲线中,在对开关进行故障预测时通过对照曲线以及所有的易发故障曲线共同进行预测,提高预测的准确性以及覆盖率。
12.与现有技术相比,本发明的有益效果是:1、本发明中,通过采集开关设备启动、运行和关闭三中不同时段的温度曲线,以不同的权重配比来综合反映开关的状况,能够更好的对开关的运行状态作出判断,从而更加准确的预测开关发生故障的概率。
13.2、本发明中,通过采集温度和湿度两种参数数据,使得在通过温度分析开关的老化状态时,能够将湿度所带来的影响排除,获取排除温度影响后的实际老化状态,更加真实准确的反映出开关老化状态,防止因为湿度原因导致系统出现故障错误预测。
14.3、本发明中,在未被预测的故障发生后,能够通过学习优化单元对故障发生时的曲线进行分析记录,生成易发故障曲线,从而在后续的使用中将易发故障曲线也纳入分析单元对开关状态评估的步骤中,使得系统在不断的使用中自发完善,进一步提高预测的准确程度。
附图说明
15.为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。
16.图1为本发明的系统框图。
具体实施方式
17.下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
18.实施例一:请参阅图1所示,基于数据分析的配电开关设备运行故障预测系统,包括数据采集单元、预处理单元、分析单元、结果输出单元、结果反馈单元、学习优化单元和数据库,分析单元与学习优化单元均具有数据储存能力;数据采集单元用于以一定的时间间隔采集配电开关设备在运行中的温度数据、湿度数据,同时记录下采集温度时对应的时间点数据,数据采集单元进行时间采集分为三个时间段,第一个时间段为开关闭合前两秒至开关闭合后两秒,对开关闭合时的温度变化进行检测,反应开关闭合瞬时的温度上升程度,第二个时间段为开关闭合后两秒至开关断开前,对开关持续运行的过程中的温度变化进行检测,反应开关运行时的发热量,第三个时间段为开关断开前两秒至开关断开后两秒,对开关断开时的温度变化量进行检测,反应开关的降温能力,第一时间段与第三时间段以每秒钟一次的频率对温度数据和湿度数据进行采集,第二时间段以每30秒一次的频率对温度数据和湿度数据进行采集,若第二时间段开关的运行时长不足30秒,则不对运行时间段的数据进行采集,并将采集到的时间、温度和湿度信号发送至预处理单元;预处理单元在收到数据采集单元发送的温度信号、时间信号和湿度信号后,以采集温度时的时间点为x轴,以温度数据为y轴,作出时间-温度曲线,预处理单元对第一时间段的时间、温度和湿度数据进行处理,生成第一时间段的时间-温度曲线和时间-湿度曲线,预处理单元对第二时间段的时间、温度和湿度数据进行处理,生成第二时间段的时间-温度
曲线和时间-湿度曲线,预处理单元对第三时间段的时间、温度和湿度数据进行处理,生成第三时间段的时间-温度曲线和时间-湿度曲线,同时对曲线进行平滑处理,若某一点的温度与其相邻的两个数据点均出现断崖式上升或下降,则标记为不合理数据,若某一点与其前一个数据点相比出现温度断崖式下降,则也标记为不合理数据,其中断崖式下降的数据点判断方法为:将相邻两数据点连为一条直线,若该直线的斜率的绝对值超过所预设的斜率阈值,则判定两数据点中位于后方的一数据点出现了断崖式变化,对不合理数据进行剔除后连接剔除点两侧的曲线,并再次重复上述步骤对连接后的曲线进行再次处理,直至无不合理数据出现,按照常识,温度能够快速上升,但受制于无专门散热系统限制,温度无法快速下降,剔除不合理的数据使得数据更加符合常理,将采集湿度时的时间点作为x轴,以湿度作为y轴,作出时间-湿度曲线,同时对曲线进行平滑处理,标记脱离曲线的突变数据,预处理单元将处理后的时间-温度曲线、时间-湿度曲线以及湿度曲线上的突变数据发送至分析单元;分析单元接收到时间-温度曲线后,从数据库中调取所存储的良好运行状态下的时间-温度对照曲线,将时间-温度曲线与时间-温度对照曲线进行叠加比较,比较时以时间轴作为基准进行重合,时间-温度曲线上的温度值记为tn,时间-温度对照曲线上的温度值记为tn,将两条曲线上的温度值的差值分析,得到开关温度异常特征值k,;三组不同时段的时间-温度曲线均通过此方法进行计算,分别得到三组不同的开关温度异常特征值k1、k2和k3,其中y为权重系数,三组不同时段的y分别为y1、y2和y3,其中y1+y2+y3=1,通过三组不同的权重系数为开关闭合、运行以及断开三个时间段分配不同的占比,使得三个时间段能够综合反映开关的老化状态,使得分析更加准确,k1、k2、k3的值为在运行环境下带有湿度影响的开关温度异常特征值,因此即使对于两组老化状态完全相同的开关,若环境湿度发生改变,则k值也会发生变化,为了能够准确的反映排除环境湿度影响下的开关真实老化状态,分析单元对时间-湿度曲线与时间-湿度对照曲线以时间轴为基准进行重合,将时间-湿度曲线上的湿度值记为rhn,时间-湿度对照曲线上的湿度值记为rhn,将两条曲线上的湿度值进行差值分析,得到环境干扰特征值j,,其中x为干扰系数,x为固定值,并将开关温度异常特征值k和环境干扰特征值j计算得到开关故障特征值m,,开关故障特征值m为排除环境湿度影响下的开关真实老化状态,能够更加直接的反应开关本身的状态,提高故障预测的准确率,并对比较结果进行故障预测,分析单元从数据库中调取开关故障特征值阈值mmax,将m与mmax进行比较,若m≥mmax,则对输出单元发出开关异常信号,若m<mmax,则对输出单元发出开关正常信号,将故障预测结果发送至结果输出单元;
结果输出单元收到开关异常信号后,在屏幕上显示“开关待更换”文本,结果输出单元收到开关正常信号后,不作出反应,在操作人员对开关进行更换后,结果输出单元进行一次初始化;结果反馈单元记录到开关发生故障时,若结果输出单元在上一次初始化后至此次故障发生前未收到开关异常信号,则将此次故障定义为未被预测的故障,结果反馈单元记录到未被预测的故障后,将故障信号发送至分析单元,分析单元根据未被预测的故障发生时间,调取出包含该时间点的三个时间段的时间-温度和时间-湿度曲线,将其标记为故障信号曲线,并将该故障信号曲线发送至数据库进行储存,当后续每次发生未被预测的故障时,将该次故障的故障信号曲线发送至数据库储存的同时向分析单元发送二次分析信号,分析单元在收到二次分析信号后,将最新发生的故障信号曲线与往期所储存的故障信号曲线一一比对,若存在相类似的故障信号曲线重复出现2次及以上,则将其标记为易发故障曲线,取两条故障信号曲线上同一x点所对应y轴的坐标,若该两点的y轴坐标差值在设定差值以内,则判定两点重合,将重合点数除以该故障信号曲线的总点数,得到重合度,若该次故障信号曲线与往期所储存的其中一条故障信号曲线上的重合度超过所设定的重合度阈值,则判定该两条故障信号曲线为相类似;根据多次出现的相类似故障信号曲线对易发故障曲线进行拟合,每一组易发故障曲线为时间-湿度曲线和时间-温度曲线两条曲线,此后系统在通过分析单元在进行下一次开关运行的时间-温度曲线和时间-湿度叠加比对分析时,增加与数据库中存储的所有易发故障曲线的比对分析过程,并根据时间-湿度曲线以及时间-温度曲线与每一组易发故障曲线的贴合程度分析开关发生故障的几率,若时间-温度曲线和时间-湿度曲线均与易发故障曲线中的温度和湿度曲线的贴合程度小于等于贴合程度阈值,则向结果输出模块发出往期故障信号,若时间-温度曲线和时间-湿度曲线中的任意一条与易发故障曲线中的温度和湿度曲线的贴合程度大于贴合程度阈值,则不作出反应,结果输出模块收到往期故障信号后,在屏幕上显示“往期故障,开关待更换”文本,以提高故障预测系统的预测能力。
19.实施例二:一种基于数据分析的配电开关设备运行故障预测方法,包括以下步骤:步骤一:通过数据采集单元采集配电开关设备在运行过程中的温度、湿度以及对应的时间数据,并将该数据发送预处理单元进行预处理,预处理单元将各种数据处理成为曲线的形式,并将曲线发送至分析单元中;步骤二:分析单元通过将曲线与对照曲线进行分析比对,通过数值计算、阈值比对的方式判定开关设备的当前运行状况与良好工况下的差距,并对是否需要更换开关设备作出判断;步骤三:当未被预测的故障发生时,通过结果反馈单元与数据库进行记录,并通过分析单元对后续发生的故障进行比对,将出现两次及以上的故障曲线标记为易发故障曲线,将易发故障曲线纳入对照曲线中,在对开关进行故障预测时通过对照曲线以及所有的易发故障曲线共同进行预测,提高预测的准确性以及覆盖率。
20.本发明中,通过采集开关设备启动、运行和关闭三中不同时段的温度曲线,以不同的权重配比来综合反映开关的状况,能够更好的对开关的运行状态作出判断,从而更加准确的预测开关发生故障的概率,通过采集温度和湿度两种参数数据,使得在通过温度分析
开关的老化状态时,能够将湿度所带来的影响排除,获取排除温度影响后的实际老化状态,更加真实准确的反映出开关老化状态,防止因为湿度原因导致系统出现故障错误预测,在未被预测的故障发生后,能够通过学习优化单元对故障发生时的曲线进行分析记录,生成易发故障曲线,从而在后续的使用中将易发故障曲线也纳入分析单元对开关状态评估的步骤中,使得系统在不断的使用中自发完善,进一步提高预测的准确程度。
21.以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
技术特征:
1.基于数据分析的配电开关设备运行故障预测系统,其特征在于,包括数据采集单元、预处理单元、分析单元、结果输出单元、结果反馈单元、学习优化单元和数据库;所述数据采集单元用于以一定的时间间隔采集配电开关设备在运行中的温度、湿度数据,同时记录下采集温度时对应的时间点数据,将所采集到的数据发送至预处理单元;预处理单元在收到数据采集单元发送的时间点数据、温度数据和湿度数据后,以采集温度时的时间点为x轴,以温度数据为y轴,作出时间-温度曲线,同时对曲线进行平滑处理,剔除不合理的数据,将采集湿度时的时间点作为x轴,以湿度作为y轴,作出时间-湿度曲线,同时对曲线进行平滑处理,标记脱离曲线的突变数据,预处理单元将处理后的时间-温度曲线、时间-湿度曲线以及湿度曲线上的突变数据发送至分析单元;分析单元接收到时间-温度曲线后,从数据库中调取所存储的良好运行状态下的时间-温度对照曲线,将时间-温度曲线与时间-温度对照曲线进行叠加比较,分析单元在收到时间-湿度曲线后,从数据库中调取所存储的良好运行状态下的时间-湿度对照曲线,将时间-湿度曲线与时间-湿度对照曲线进行叠加比对分析,并对比较结果进行故障预测,将故障预测结果发送至结果输出单元;结果输出单元收到故障预测信号后,对信号进行显示;结果反馈单元用于记录未被预测而发生的故障,并将故障信号发送至分析单元,分析单元收到故障信号后追溯故障发生时的时间-温度曲线以及时间-湿度曲线,并将曲线发送至学习优化单元;学习优化单元收到分析单元发出的曲线后,通过与数据库中的良好运行状态下的曲线进行对比分析,完成故障预测的优化,并将优化结果同时发送至数据库与分析单元。2.根据权利要求1所述的基于数据分析的配电开关设备运行故障预测系统,其特征在于,所述数据采集单元进行时间采集分为三个时间段,第一个时间段为开关闭合前两秒至开关闭合后两秒,第二个时间段为开关闭合后两秒至开关断开前,第三个时间段为开关断开前两秒至开关断开后两秒,第一时间段与第三时间段以每秒钟一次的频率对温度数据和湿度数据进行采集,第二时间段以每30秒一次的频率对温度数据和湿度数据进行采集,并将采集到的时间、温度和湿度信号发送至预处理单元。3.根据权利要求1所述的基于数据分析的配电开关设备运行故障预测系统,其特征在于,所述预处理单元对第一时间段的时间、温度和湿度数据进行处理,生成第一时间段的时间-温度曲线和时间-湿度曲线,所述预处理单元对第二时间段的时间、温度和湿度数据进行处理,生成第二时间段的时间-温度曲线和时间-湿度曲线,所述预处理单元对第三时间段的时间、温度和湿度数据进行处理,生成第三时间段的时间-温度曲线和时间-湿度曲线;预处理单元对上述三组时间-温度曲线进行平滑处理,若某一点的温度与其相邻的两个数据点均出现断崖式上升或下降,则标记为不合理数据,若某一点与其前一个数据点相比出现温度断崖式下降,则也标记为不合理数据,对不合理数据进行剔除后连接剔除点两侧的曲线,并再次重复上述步骤对连接后的曲线进行再次处理,直至无不合理数据出现,并将处理后的时间-温度曲线与时间-湿度曲线发送至分析单元。4.根据权利要求1所述的基于数据分析的配电开关设备运行故障预测系统,其特征在于,所述分析单元在将预处理单元发送的曲线与数据库中调取的良好运行状态下的对照曲线进行叠加比较,以时间轴作为基准进行重合,时间-温度曲线上的温度值记为tn,时间-温
度对照曲线上的温度值记为tn,将两条曲线上的温度值的差值分析,得到开关温度异常特征值k,;三组不同时段的时间-温度曲线均通过此方法进行计算,分别得到三组不同的开关温度异常特征值k1、k2和k3,其中y为权重系数,三组不同时段的y分别为y1、y2和y3,其中y1+y2+y3=1;分析单元对时间-湿度曲线与时间-湿度对照曲线以时间轴为基准进行重合,将时间-湿度曲线上的湿度值记为rhn,时间-湿度对照曲线上的湿度值记为rhn,将两条曲线上的湿度值进行差值分析,得到环境干扰特征值j,,其中x为干扰系数,x为固定值;三组不同时间段的时间-湿度曲线均通过此方法得到三组不同的环境干扰特征值j1、j2和j3,通过开关温度异常特征值k和环境干扰特征值j计算得到开关故障特征值m,;所述分析单元从数据库中调取开关故障特征值阈值mmax,将m与mmax进行比较,若m≥mmax,则对输出单元发出开关异常信号,若m<mmax,则对输出单元发出开关正常信号。5.根据权利要求4所述的基于数据分析的配电开关设备运行故障预测系统,其特征在于,所述结果输出单元收到开关异常信号后,在屏幕上显示“开关待更换”文本,所述结果输出单元收到开关正常信号后,不作出反应。6.根据权利要求1所述的基于数据分析的配电开关设备运行故障预测系统,其特征在于,所述结果反馈单元记录到开关发生故障时,若结果输出单元未收到开关异常信号,则将此次故障定义为未被预测的故障,结果反馈单元记录到未被预测的故障后,将故障信号发送至分析单元,分析单元根据未被预测的故障发生时间,调取出包含该时间点的三个时间段的时间-温度和时间-湿度曲线,将其标记为故障信号曲线,并将该故障信号曲线发送至学习优化单元与数据库进行储存,当后续每次发生未被预测的故障时,将故障信号曲线发送至数据库储存的同时向分析单元发送二次分析信号,分析单元在收到二次分析信号后,将最新发生的故障信号曲线与往期故障信号曲线一一比对,若存在相类似的故障信号曲线重复出现2次及以上,则将其标记为易发故障曲线。7.根据权利要求1所述的基于数据分析的配电开关设备运行故障预测系统,其特征在于,所述分析单元在进行下一次曲线叠加比对分析时,增加与数据库中存储的所有易发故障曲线的比对分析过程,并根据时间-湿度曲线以及时间-温度曲线与易发故障曲线的贴合程度分析开关发生故障的几率,若时间-温度曲线和时间-湿度曲线均与易发故障曲线贴合程度小于等于贴合程度阈值,则向结果输出模块发出往期故障信号,若时间-温度曲线和时间-湿度曲线中的任意一条与易发故障曲线贴合程度大于贴合程度阈值,则不作出反应,结果输出模块收到往期故障信号后,在屏幕上显示“往期故障,开关待更换”文本。
8.基于数据分析的配电开关设备运行故障预测方法,其特征在于,包括以下步骤:步骤一:通过数据采集单元采集配电开关设备在运行过程中的温度、湿度以及对应的时间数据,并将该数据发送预处理单元进行预处理,预处理单元将各种数据处理成为曲线的形式,并将曲线发送至分析单元中;步骤二:分析单元通过将曲线与对照曲线进行分析比对,通过数值计算、阈值比对的方式判定开关设备的当前运行状况与良好工况下的差距,并对是否需要更换开关设备作出判断;步骤三:当未被预测的故障发生时,通过结果反馈单元与数据库进行记录,并通过分析单元对后续发生的故障进行比对,将出现两次及以上的故障曲线标记为易发故障曲线,将易发故障曲线纳入对照曲线中,在对开关进行故障预测时通过对照曲线以及所有的易发故障曲线共同进行预测,提高预测的准确性以及覆盖率。
技术总结
本发明涉及故障预测技术领域,具体为基于数据分析的配电开关设备运行故障预测系统及方法,包括数据采集单元、预处理单元、分析单元、结果输出单元、结果反馈单元、学习优化单元和数据库;本发明中,将启动、运行和关闭以不同的权重配比来综合反映开关的状况,更加准确的预测开关发生故障的概率,并通过采集温度和湿度两种参数数据,使得在通过温度分析开关的老化状态时,获取排除温度影响后的实际老化状态,更加真实准确的反映出开关老化状态,在未被预测的故障发生后,学习优化单元生成易发故障曲线,在后续的使用中将易发故障曲线也纳入分析单元对开关状态评估的步骤中,使得系统在不断的使用中自发完善。不断的使用中自发完善。不断的使用中自发完善。
技术研发人员:
翟亮 王伟 来连义 王兆峰 孙磊 高伟 孙玮 郭立娟 陈珍芝 胡希同 安韵竹 胡元潮 孙启龙 杨敦高 陈平 徐栋 张焕臣
受保护的技术使用者:
山东理工大学
技术研发日:
2022.10.25
技术公布日:
2022/11/22