城市生活垃圾焚烧过程

阅读: 评论:0

城市生活垃圾焚烧过程中二次污染物的生成与控制
    摘 要  在我国,采用焚烧法处理城市固体垃圾,逐渐得到推广和应用。然而焚烧带来的二次污染物,如二、细颗粒、重金属、HCl以及SOx、NOx等也随之引起了广泛关注。对垃圾焚烧过程中各种二次污染物的产生机理及其控制方法进行了综述。并且指出近期我国城市固体垃圾焚烧烟气污染物的重点控制对象应为颗粒物、HCl、SOx和NOx。
    关键词 城市生活垃圾  焚烧  二次污染物
  一、二噁英的生成机理与控制方法
  1.1 二噁英的结构
    二噁英是毒性很强的一类三环芳香族有机化合物,有2个或1个氧原子联接多个被氯取代的苯环,分别称为多氯二苯并二(PCDDs)和多氯二苯并呋喃(PCDFs)。每个苯环上可以取代1)4个氯原子,共有75个PCDD异构体和135个PCDF异构体[1]。各种异构体的毒性有所差异,其中毒性最强的是2, 3, 7, 8-四氯二苯并二噁英(2, 3, 7, 8-TCDD)。常温常压下PCDD/Fs均为固体,熔点较高,通常在300e左右,难溶于水,易溶于脂肪,所以PCDD/Fs容易在生物体内积累。对PCDD/
Fs的暴露会引起皮肤痤疮、头痛、失聪、忧郁、失眠等症状。即使在很微量的情况下,长期摄取时也会致癌和致畸。
  1.2 垃圾焚烧二噁英的形成
一般认为,有氯和金属存在条件下的有机物燃烧均会产生二噁英。统计发现,城市生活垃圾焚烧产生的二量最多,其次是有害废弃物焚烧和医院废弃物焚烧等。1990年,日本/二0类发生总量为3940~8405 g TEQ/Y,主要发生源如表1所示。
  表1 二主要发生源和发生量
发生源
发生量(g TEQ/Y )
城市垃圾焚烧
3100~7400
有害废弃物焚烧
460
医疗废弃物焚烧
80~240
帖冶炼
旋转衣柜250
造纸厂漂白废液焚烧
40
下水道污泥焚烧
5
    城市生活垃圾中含有20%~50%的有机物,这些有机物中大多含有碳、氢、氧3种元素。城市生活垃圾分析结果表明,垃圾中氯元素的来源分为两类:一类是有机氯化物如聚氯乙烯塑料(PVC)、氯苯和氯酚等,主要分布在废塑料、废纸、废木料以及草木中;另一类是无机的氯化物如氯化钠、氯化镁等,主要分布在厨余、灰土等无机组分中。这些都是构成垃圾焚烧产生二噁英的最基本要素。一般认为,垃圾焚烧产生二噁英主要有以下两个途径:(1)炉内生成:在燃烧过程中,若缺氧燃烧,会生成二噁英的前驱物,这些前驱物与垃圾中的氯化物、O2、O离子进行复杂化学反应,生成二噁英类物质;(2)尾部再度合成:不完全燃烧反应所生成的二噁英的前驱物以及垃圾中未燃尽的环烃物质,在烟尘中的Cu、Ni、Fe等金属粒子催化作用下,与烟气中的氯化物和发生反应,生成二噁英类物质,催化反应温度在300℃左右时,易生成二噁英类物质。
    1.3 二噁英的污染控制方法
    1.3.1 改进燃烧技术
    采用/3T0(turbulence、temperature、time)技术,一般温度>850e,停留时间>2 s,采用二次风,使燃烧物与空气充分搅拌混合,造成富氧燃烧状态,减少二前驱物的生成。日本某垃圾焚
风力摆控制系统烧厂采用/3T0技术,使焚烧炉出口PCDD/Fs的排放量从33.1 ng/m3下降到6.1 ng/m3,效果十分明显[2]。也可采用分段燃烧,一段燃烧处于缺氧还原区,所产生的二噁英类物质在二次燃烧室内彻底氧化分解,二次燃烧室内温度较高,通常在1000e以上,有研究表明,二噁英去除率可达99.9999%[3]。另外,有报道显示,采用流化床燃烧方式,由于能够很好地满足/3T0技术,可使二噁英排放量减少98%[4]。
  1.3.2 废气处理技术
    在实现完全燃烧降低二噁英的前驱物合成后,下面要解决的是残存的前驱物重新合成和生成的二噁英捕集的问题。通常采用降低排烟温度,使气相中的二噁英转移到灰相中,然后使用布袋除尘器将二噁英除去。实验数据已证明,降低温度在抑制二噁英类物质的重新生成和提高吸附捕集效率两方面均很有效。控制袋式除尘器的入口温度在150e以下,由于合成二噁英类物质的催化反应温度为300e左右,因此其前驱物不可能在布袋式除尘器中催化合成二噁英物质。布袋除尘器在工作时,在滤布表面会形成颗粒层,废气中的二噁英类物质通过该层被吸附脱除,被吸附的二噁英类物质排至灰渣处理系统中。与袋式除尘器不同,若静电除尘器的入口温度在300℃左右,残存的前驱物重新合成二噁英。所以现在一般要求采用布袋除尘器。
该项技术已应用于实际设备,取得显著效果。当排烟中微小粒子较少时,该处理方法效果下降,这时可采用喷射中和酸性气体成分(HCl、SOx)的熟石灰或石灰浆,与布袋除尘系统联合使用,该系统去除二十分有效。也可在布袋除尘器前喷射活性炭粉末,它具有较大的比表面积,吸附能力较强,在排烟温度<220e,活性炭的添加量为飞灰量的5%~6%时,与布袋除尘器联合使用,二噁英的去除率在95%以上[5],采用喷射熟石灰或石灰浆和活性炭粉末去除HCl、SOx和二噁英比较适合我国国情。
低压成型机
    研究表明,去除烟气中的二可以使用能够同时使二和NOx分解的触媒,触媒材料为V2O5/TiO2。当烟气入口温度在200e左右时,二噁英去除率高达90%以上[5]。最近的试验结果表明,在烟温410℃和670℃之间喷NH3、SO2、二甲胺、(CH3)NH和甲硫醇(CH3SH)等物质,颗粒相二噁英的去除率可达98%,二噁英总去除率达42%~78%[6]。
  1.3.3 灰渣熔融处理技术
    通过改进燃烧和废气处理技术,最大限度减少排入大气的二噁英类物质的量,被吸附的二噁英类物质随颗粒一起进入灰渣系统中,所以灰渣中的二噁英的量比大气中的二噁英的量多得多。熔融处理技术是通常的灰渣处理技术,将灰渣送入温度为1200℃以上的熔化炉内熔化,
灰渣中的二类物质在高温下,被迅速分解和燃烧。实验证明,通过灰渣熔融处理过后,PCDD/PCDF的分解率达99.77%[7]。因此,灰渣熔融处理技术是一种较为有效的灰渣处理手段。
  二、 HCl的生成机理与控制方法
    常温下,HCl为无气体,有刺激性气味,极易溶于水而形成盐酸。HCl对人体的危害很大,对于植物,HCl会导致叶子褪绿,进而出现变黄、棕、红至黑的坏死现象。HCl对余热锅炉会造成过热器高温腐蚀和尾部受热面的低温腐蚀,例如深圳市垃圾焚烧炉过热器曾经只运行100 d就被HCl高温腐蚀损毁[8]。
  2.1 HCl的生成机理
    一般认为垃圾焚烧炉烟气中HCl的来源有两个:
  (1)垃圾中的有机氯,如PVC塑料、橡胶、皮革等燃烧时分解生成HCl;
    (2) 垃圾中的无机氯化物如NaCl(来自厨房垃圾)与其他物质反应生成HCl,化学反应为:
            H2O+2NaCl+SO2+0.5O2yNa2SO4+2HCl{(1)
            2NaCl +mSiO2+ H2O = 2HCl + Na2O#mSiO2(2)(其中m=2, 4)
            H2O+MgCl2+SO2+0.5O2yMgSO4+2HCl{(3)
  2.2 HCl的脱除方法
    2.2.1 抑制燃烧时HCl的生成量
    Courtemanche等[9]研究发现,在850)1050e炉温范围内,向炉内喷入磨碎的氢氧化钙、氢氧化镁、醋酸钙、醋酸镁、醋酸镁钙、甲酸钙、丙酸钙和苯甲酸钙粉等吸收剂时,可以减少HCl的生成量,HCl的脱除率为3%)98%。文献也介绍了向炉内喷氨减少HCl的方法[10]。
2.2.2 采用HCl烟气处理装置
干式系统:烟气和吸收剂在吸收塔内反应脱除HCl。吸收剂采用Ca(OH)2。Ca(OH)2吸收剂在反应塔内脱除HCl的反应为:
喉管Ca(OH)2+2HClyCaCl2+2H2O(4)
    半干式系统:石灰浆在喷雾吸收反应塔内被雾化,雾滴与热烟气相接触,经过复杂的传热传质反应过程,HCl被脱除,脱除率较干式系统高,但成本也相应提高。湿式系统:烟气先经过布袋除尘器或静电除尘器后再进入湿式洗涤塔,脱除HCl的反应同式(4)。该系统HCl脱除率最高,但成本也最高。烟气悬浮吸收系统(gas suspension absorber,GSA)[12]是气态污染物净化设备,是以循环流化床技术为基础的烟气净化装置,广泛应用于垃圾焚烧炉气态污染物的控制。将未处理的焚烧烟气引入文丘里管,借助于文氏管内的喷嘴使Ca(OH)2干粉和水或石灰浆雾化后喷注于烟气中,在气体高度紊流状态下,使气固混合达到均匀状态后进入循环流化床内。GSA内/固-气0比的平均范围约为0.5)1kg/m3,大量的吸收剂固体粒子在GSA内处于/流化0状态,与烟气中的酸性气体发生化学反应,净化后的烟气夹带着固体粒子进入旋风分离器,分离下来的吸收剂通过给料装置回送至反应塔(GSA)内,实现物料循环。该系统造价是湿式系统的60%。该系统用于丹麦Kara 4号垃圾焚烧炉的测量结果见表2所示[13]。
  三、细颗粒和重金属污染物的控制
    垃圾破碎和燃烧过程中会产生大量的细颗粒,颗粒的粒径大小是决定其毒性作用的主要因素。实验表明,小于1.1Lm的颗粒很容易进入肺泡,被吸附在细颗粒上的有害物质会被人体吸
表面保护膜收到血液中,颗粒粒径愈小,致突变活性愈高。细颗粒中含重金属元素包括Hg、Pd、Cd、Cr、Cu、Ni、Zn、Mn等,在这些污染物中含有为数可观的致癌、致突变、致畸化合物和若干有毒有害化学成分。对人体危害大的元素主要集中在小于3Lm的颗粒物中。所以,只要除掉烟气中的细颗粒,就能减少重金属的危害。
表2 GAS用于丹麦Kara 4号垃圾焚烧炉的测量结果
    名称    单位          进口浓度  出口浓度  去除率(%)
    HCl      mg/m3(11%O2)  /        9          /
滤扇    SO2      mg/m3(11%O2)  /        51        /
    HF      mg/m3(11%O2)  /        0.2        /
    汞化物  mg/m3(11%O2)  0.122    0.007      94
    二噁英  ng-TEQ/m      32.2      0.0024    99.1
    国内外对垃圾焚烧重金属污染的控制研究大致可分焚烧前控制、焚烧过程中控制以及焚烧后控制三方面[14]。
焚烧前控制:将垃圾分类分拣,将重金属浓度含量较高的废旧电池及电器、杂质等从原生垃圾中分拣出,可以大大减少垃圾焚烧产物中汞、铅和镉的含量。
焚烧过程中控制:主要是采用控制空气燃烧法(CAO)[15],即将垃圾在600)650e左右的一燃室热解、气化和固定碳燃烧,这样重金属不会升华,而保留在灰中。在二燃室中可燃气体在高温下燃尽,从而在燃烧过程中降低重金属的排放。

本文发布于:2023-05-19 09:47:04,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/4/105519.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:燃烧   烟气   控制   垃圾   系统   颗粒   处理   焚烧
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图