第二章
2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)
对应点的视网膜图像的直径x可通过如下图题2.1所示的相似三角形几何关系得到,即
解得x=0.06d。根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小成像单元的阵列。假设成像单元之间的间距相等,这表明在总长为1.5 mm(直径) 的一条线上有655个成像单元和654个成像单元间隔。则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m。 如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。换句话说, 眼睛不能检测到以下直径的点: ,即
2.2 当我们在白天进入一家黑暗剧场时,在能看清并到空座时要用一段时间适应。2.1节描述的视觉过程在这种情况下起什么作用?
亮度适应。
2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。美国的商用交流电频率是77HZ。问这一波谱分量的波长是多少? 光速c=300000km/s ,频率为77Hz。
因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km.
2.5
根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm.
2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为:
的光源照射。为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。如果图像用k比特的强度分辨率进行数字化,并且眼睛可检测相邻像素间8种灰度的突变,那么k取什么值将导致可见的伪轮廓?