研究报告
1.历史沿革
八木天线又称引向天线,它是由日本东北大学的八木和宇用共同实验和研制成的。1926年八木在辛:家学会宣讲了题为“Pr四ector of the Sharpest Be枷of Electricwaves”(电波的最锐波束发射器)的论文,同年又在东京举行的第三届泛太平洋会议(the nird Pall.Pacmc Congress)上宣讲了题为“0n the Feasibilitv of PowertransmiSSion by Electric whvcs”(论电波功率传输之可行性)的论文,提出利用多引向器周期性结构的导向作用,即所谓的“波渠”(wave chaIlnel),可以产生短波的窄波束,用于短波的功率传输。此后八木和宇田继续在合作下从事天线的研究,八木曾于1928年旅美期间,对无线电工程师协会(mE)纽约、华盛顿、哈佛等地的分会进行演讲,并在“Proccedings ofthe mE”上发表了他的著名论文“Beam11ransmi蚓on of ultra Short wjves”(超短波的波束传输),该天线随即被称为“八木天线”。八木天线已经被广泛的应用于米波及分米波段的通讯,雷达、电视及其它无线电技术设备中。 2.工作原理及特点
相对与基本的半波对称振子天线和折合振子天线,八木天线增益高,方向性强,抗干扰,作用距离远,并且价格低廉,构造简单,通常八木天线由一个激励振子,一个反射振子,和若干个引向振子组成,相比之下,反射振子最长,位于紧邻主振子一侧,引向都比较短,位于另一侧。主振子与馈电系统相连,属于有源振子,其他反射和引向振子都属于无缘振子,所有振子处于同一个平面内,并且按一定间距平行固定在一根横贯各振子的中心金属横梁上,除了有源振子馈电点必须与金属杆绝缘外,无源振子则都与金属秆短路连接。因为金属杆与各个振子垂直,所以金属杆上不感应电流,也不参与辐射。引向天线的最大辐射方向在垂直于各个振子且由有源振子指向引向器的方向,所以它是一种端射式天线阵。 八木天线的工作原理是这样的(以三单元天线接收为例):引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。此时,引向器对感应信号呈 “容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射, 辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号 90°,恰
好抵消了前面引起的“超前”,两者相位相同,于是信号迭加,得到加强。反射器略长于二分之一波长,呈感性,电流滞后 90°,再加上辐射到主振子过程中又滞后 90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用。一个方向加强,一个方向削弱,便有了强方向性。发射状态作用过程亦然。天线的一个重要特征,那就是“输入阻抗”。在谐振状态,天线如同一只电阻接在馈线端。常用馈线阻抗为50Ω,如果天线输入阻抗也是50Ω,那就达到了“匹配”,电台输出的信号就能全部从天线上发射出去;如果不“匹配”,一部分功率就会反射回电台的功放电路。 二分之一波长偶极天线的输入阻抗约为67Ω,二分之一波长折合振子的输入阻抗则高于前者4 倍。当加了引向器、反射器后,阻抗关系就变得复杂起来了。总的来说八木比仅有基本振子的阻抗要低很多,且八木各单元间距大则阻抗高,反之阻抗变低,同时天线效率降低。有资料介绍,引向器与主振子间距 0.15 波长时阻抗最低,0.2 -0.25 时阻抗高,效率提高。这时阻抗的变化范围约在5 -20Ω 间。
经典的折合振子八木天线的特性阻抗约为300Ω,(振子间距约四分之一波长)如常见的电视接收天线。折合振子折合的间距狭窄时、或二分之一波长的“长边”直径大于那两个约四分之一波长的“短边”的直径时,其输入阻抗较高。
我们的通信机输出都是按50Ω 设计的,配50Ω 电缆作馈线。八木天线怎样才能与馈线达到阻抗匹配?显然不能不考虑这个问题。于是就有了各种各样的匹配方法。短波波段八木常用的“发夹式”匹配,是在馈电处并接一段 U 型导体,它起着一个电感器的作用,和天线 本身的电容形成并联谐振从而提高了天线阻抗;还有经典的“伽玛”匹配、著名的HB9CV 天线等等。最简单的做法是把靠近天线馈电处的馈线绕成一个约六、七圈直径约 15 厘米的线圈挂在那里,我想这与发夹匹配的原理应该是一样的吧。
输入阻抗是天线的一个重要特性指标,它主要由有源振子固有的自阻抗及与其邻近的几个无源振子间的互阻抗来决定的。远处的引向器,由于和主振子耦合较弱,互阻抗可忽略不计。通常主振子有半波对称振子和半波折合振子两种形式,单独谐振状态下,输入阻抗都为纯电阻,半波对称振子的Zin=73.1Ω,标称75Ω,半波折合振子的Zin=292.4Ω,标称300
Ω,是半波对称振子的四倍。而加了引向器、反射器无源振子后,由于相互之间的电磁耦合,阻抗关系变得比较复杂,输入阻抗显著降低,并且八木天线各单元间距越小阻抗也越低。为了增大输入阻抗,提高天线效率,故主振子多选用半波折合振子的形式,这样也能同时增加天线的带宽。只要适当选择折合振子的长度,两导体的直径比及其间距,并结合调整反射器及附近几个引向振子的尺寸,就可以使输入阻抗变换到等于或接近馈线特性 阻抗的数值。
八木天线是“平衡输出”,它的两个馈电点对“地”呈现相同的特性,但通常的收发信机天线端口却是“不平衡”的,芯线是热端,外导体接地。虽然我们也可以视而不见地将馈线芯线随意接在天线两个馈电点之一上,另一点接馈线的外导体层,但是,这将破坏天线原有的方向特性,而且在馈线上也会产生不必要的发射。一副好的八木,应该有“平衡-不平衡”转换。
有朋友问,架设八木时天线的振子是和大地平行好还是垂直与大地好?回答是,收、发信双方保持相同“姿势”为好。振子水平时,发射的电波其电场与大地平行,称“水平极化波”,振子与地垂直时发射的电波属“垂直极化波”。收发双方应该保持相同的极化方式。在U/V波段,人们大量使用着直立天线,八木天线当然也就应少数服从多数,让振子垂直于大地。短波波段八木天线多为水平架设,而且,这样的庞然大物恐怕想垂直架也无法实现!
3.应用
(1).米波雷达
对付隐性飞机,米波雷达是一个比较有效的手段。因为第5代战斗机的隐形技术主要是针对厘米波段的现代军用雷达的。对于波长更长的老式米波雷达,以及波长更短的毫米波,隐形的效果大大地打了折扣。
天线阵列有两种,一种通过转动整个阵列扫描整个天空。这叫做机械扫描。这部雷达应该是机械扫描的。更先进的是使用电子扫描的相控阵雷达。相控阵雷达是由很多小单元组成的二维或3维阵列。每一个小单元都有天线和独立的发射/接收机,以现代电子技术的发展状况,发射/接收机即便不能做在一块芯片上,也可以做在一个不大的盒子里。在这个大型的阵列后面,是一个智能网络,控制每一个单元的相位,使得合成的雷达波在空间的一个方向甚至几个方向上形成很窄的波束。
怎么知道它是一部米波雷达?熟悉天线阵列设计的人一看照片就知道。在天线阵列中,每一个发射天线的长度,相邻发射天线的距离,每一排天线间的距离,都必须和波长在一定的比例范围内。否则这个阵列就不会工作。通过这张照片目测,它使用的雷达波长应该在1-2米之间。
米波雷达的问题是天线必须做得比较大。因为要得到同样的聚焦性能(用术语说,同样的增益),天线的尺度与波长成正比。牺牲了天线的增益,也就牺牲了探测距离和定位精度。上面的这座米波雷达,对隐形飞机的探测距离不会超过几十公里。
我们将要看到,把米波雷达安装在飞机上,优势更大。民航机的优势在于它巨大的机身。波音777、747,空客330、340都有60-70米左右的翼展。这一点,中国所有的军用飞机,包括用来做大型预警飞机的伊尔76都比不上。它们的机翼下可以挂载60米宽的米波雷达阵列。地面上这样的雷达阵列并不实用,既不容易藏起来,又不容易机动。很容易被敌人的远程清除掉,战场生存能力值得怀疑。
(2).调频广播接收天线
FM接收八木天线定向工作的原理,可依据电磁学理论进行详尽的数学推导,但是比较繁琐复杂,普通读者也不易理解,这里只做定性的简单分析:我们知道,与天线电气指标密
切相关的是波长λ,长度略长于λ/4整数倍的导线呈电感性,长度略短于λ/4整数倍的导线呈电容性。由于主振子L采用长约λ/2的半波对称振子或半波折合振子,在中心频点工作时处于谐振状态,阻抗呈现为纯电阻,而反射器A比主振子略长,呈现感性,假设两者间距a为λ/4,接收信号时从天线前方某点过来的电磁波将先到达主振子,并产生感应电动势ε1和感应电流I1,再经λ/4的距离后电磁波方到达反射器,产生感应电动势ε2和感应电流I2,因空间上相差λ/4的路程,故ε2比ε1滞后90°,又因反射器呈感性I2比ε2滞后90°,所以I2比ε1滞后180°,反射器感应电流I2产生辐射到达主振子形成的磁场H2又比I2滞后90°,根据电磁感应定律H2在主振子上产生的感应电动势ε1'比H2滞后90°,也就是ε1'比ε1滞后360°,即反射器在主振子产生的感应电动势ε1'与电磁信号源直接产生的感应电动势ε1是同相的,天线输出电压为两者之和。
4.使用与架设
由于八木天线的增益与轴向长度(从反射器到最末引向器的距离)、单元数目、振子长度及间距密切相关,轴向越长,单元数实际也就是引向器越多,方向越尖锐,增益越高,作用距离越远,但超过四个引向器后,改善效果就不太明显了,而体积、重量、制作成本则大
幅增加,对材料强度要求也更严格,同时导致工作频带更窄。一般情况下采用6~12单元就足够了,天线增益可达10~15dB,对于高增益的要求,可采用天线阵的办法加以解决。引向器的长度通常为(0.41~0.46)λ,单元数愈多,引向器的最佳长度也就愈短,如果要求工作频段较宽,引向器的长度也应取得短些。引向器的间距一般取(0.15~0.4)λ,大于0.4λ后天线增益将迅速下降,但第一引向器B和主振子的间距应略小于其它间距,例如取b≈0.1λ时,增益将会有所提高。
一般来说,反射器A的长度及与主振子的间距对天线增益影响不大,而对前后辐射比和输入阻抗却有较大的影响,反射器长度通常为(0.5~0.55)λ,与主振子的间距为(0.15~0.23)λ。反射器较长或间距较小可有效地抑制后向辐射,但输入阻抗较低,难于和馈线良好匹配,因而要采取折衷措施。对某些前后辐射比要求较高的使用场合,可以在与天线平面垂直方向上上下安装两个反射器,或者干脆采用反射网的形式。有时为了着重改善天线带宽的低频端特性,还会在主振子的后面不同距离处排列两个长度不等的反射器,其中较短的要离主振子近些。若想改善天线的高频端特性,可适当调短引向器的长度。多元八木天线中引向器的长度和间距可以相等也可不等,从而分成均匀结构和不均匀结构两种形式,不均匀结构的引向器,离主振子越远长度越短,间隔越大,使得工作频带向高频端方
向拓展,调整起来相对灵活机动。天线增益越高,带宽也会越窄,有时为展宽频带,还可采用两个激励振子,称为双激,或者直接选用复合式引向天线。考虑到八木天线的各项电气指标在频带低端比较稳定,而高端变化较快,所以最初设计时频率通常要稍高于中心频率。另外振子所用金属管材越粗,其特性阻抗越低,天线带宽也就越大,振子直径通常为(1/100~1/150)λ,当然实际选择时还要考虑天线的整体机械特性。振子的粗细还会影响振子的实用最佳长度,这是因为电波在金属中行进的速度与真空中不尽相同,实际制作长度都要在理论值上减去一个缩短系数,而导线越粗缩短系数越大,振子长度越小,对阻抗特性也造成一定影响。