G06Q40/02 G06Q10/10
1.一种风险审批方法,其特征在于,包括:
若检测到用户的业务申请请求,获取所述用户的申请信息;
按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识;
判断所述申请特征参数是否满足预设条件;
若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息;
基于所述历史行为信息,获取所述用户的信用特征参数;
根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果。
2.根据权利要求1所述的风险审批方法,其特征在于,所述根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,包括:
基于所述申请特征参数与所述信用特征参数,确定所述业务申请请求对应的风险等级;
调用所述风险等级对应的审批接口对所述业务申请请求进行风险审批。
3.根据权利要求2所述的风险审批方法,其特征在于,所述申请特征参数包括申请数值,所述基于所述申请特征参数与所述信用特征参数,确定所述业务申请请求对应的风险等级,包括:
将所述信用特征参数输入至信用评分模型中,得到所述用户的信用评分;
根据如下公式确定所述业务申请请求对应的审批数值:
Credit_quota=μ*Func(Credit_score)*Appli_quota;
其中,所述Credit_quota表示所述审批数值,u为自然数,表示所述信用评分Credit_score对应的调节系数,所述Appli_quota表示所述申请数值,Func为任意一个实现从[0,+∞)到[0,1)映射的单调递增函数;
根据预设的数值风险等级表与所述审批数值,确定所述业务申请请求对应的风险等级。
4.根据权利要求3所述的风险审批方法,其特征在于,所述信用评分模型预先根据如下步骤进行训练:
获取设定数量的样本信用特征参数集,所述样本信用特征参数集中的样本信用特征参数标有信用评分;
建立包括输入层、卷积层、全连接层和输出层的神经网络模型;
在首次训练时,将所述神经网络模型各层节点之间的网络连接权值与阈值预先设置成满足预设条件的随机值,并设定所述样本信用特征参数的理想输出信用评分,从所述设定数量的样本信用特征参数集中随机选取设定数量的样本信用特征参数,输入至输入层,经过卷积层和全连接层,传送到输出层,获取所述样本信用指标的实际输出信用评分,完成一轮训练,并计算实际输出信用评分与理想输出信用评分的差值;
根据计算的差值,按照指定的学习规则对各层节点之间的网络连接权值和阈值进行调整,再次对所述神经网络模型进行训练,直至计算的差值不大于预设的阈值时,完成训练,训练好的神经网络模型即为所述信用评分模型。
5.根据权利要求1至4任一项所述的风险审批方法,其特征在于,所述申请特征参数包括申请数值,所述判断所述申请特征参数是否满足预设条件,包括:
查所述申请数值对应的预设条件;
根据所述预设条件判断所述申请特征参数中除所述申请数值以外的其他申请特征参数是否满足所述预设条件;
若不满足,则若所述申请特征参数不满足所述预设申请特征,提示所述用户补录申请信息。
6.一种风险审批装置,其特征在于,所述风险审批装置包括:
申请信息获取单元,用于若检测到用户的业务申请请求,获取所述用户的申请信息;
申请特征参数提取单元,用于按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识;
初始审批单元,用于判断所述申请特征参数是否满足预设条件;
历史信息调取单元,用于若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息;
信用特征参数获取单元,用于基于所述历史行为信息,获取所述用户的信用特征参数;
风险审批单元,用于根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果。
7.根据权利要求6所述的风险审批装置,其特征在于,所述风险审批单元包括:
风险等级确定模块,用于基于所述申请特征参数与所述信用特征参数,确定所述业务申请请求对应的风险等级;
风险审批模块,用于调用所述风险等级对应的审批接口对所述业务申请请求进行风险审批。
8.根据权利要求6至7任一项所述的风险审批装置,其特征在于,所述申请特征参数包括申请数值,所述初始审批单元包括:
条件查模块,用于查所述申请数值对应的预设条件;
初始审批模块,用于根据所述预设条件判断所述申请特征参数中除所述申请数值以外的其他申请特征参数是否满足所述预设条件;
补录提示模块,用于若不满足,则若所述申请特征参数不满足所述预设申请特征,提示所述用户补录申请信息。
9.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述风险审批方法的步骤。
10.一种服务器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至5中任一项所述风险审批方法的步骤。
本发明涉及信息处理技术领域,尤其涉及一种风险审批方法、装置、存储介质和服务器。
在传统的银行信贷审批方式中,信贷审批人员通过面谈、电话核实、审阅申请者材料等来对用户进行基于主观的信用风险等级的评价,并基于对用户的整体印象根据相关从业经验来给用户一个相应的授信额度。
现有的审批机制依旧停留在银行信贷的水平,用户经理录入用户的信息后,若遭到退件,用户经理又需要再次手动录入,人工审阅操作繁琐,并且对用户的总体把控基于主观思想,更多的是依赖工作经验来对用户进行风险审核。这种审批方式不仅缺乏科学依据,并且时效性差,导致审批效率不高,并且所需人力成本也较高。
综上所述,现有技术中,人工进行信息审阅完成风险审批的操作繁琐,审批方式主观性强,时效性差,审批效率不高,并且耗费较高的人力成本。
本发明实施例提供了一种风险审批方法、装置、存储介质和服务器,以解决现有技术中,人工进行信息审阅完成风险审批的操作繁琐,审批方式主观性强,时效性差,审批效率不高,并且耗费较高的人力成本的问题。
本发明实施例的第一方面提供了一种风险审批方法,包括:
若检测到用户的业务申请请求,获取所述用户的申请信息;
按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识;
判断所述申请特征参数是否满足预设条件;
若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息;
基于所述历史行为信息,获取所述用户的信用特征参数;
根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果。
本发明实施例的第二方面提供了一种风险审批装置,包括:
申请信息获取单元,用于若检测到用户的业务申请请求,获取所述用户的申请信息;
申请特征参数提取单元,用于按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识;
初始审批单元,用于判断所述申请特征参数是否满足预设条件;
历史信息调取单元,用于若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息;
信用特征参数获取单元,用于基于所述历史行为信息,获取所述用户的信用特征参数;
风险审批单元,用于根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果。
本发明实施例的第三方面提供了一种服务器,包括存储器以及处理器,所述存储器存储有可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如下步骤:
若检测到用户的业务申请请求,获取所述用户的申请信息;
按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识;
判断所述申请特征参数是否满足预设条件;
若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息;
基于所述历史行为信息,获取所述用户的信用特征参数;
根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果。
本发明实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如下步骤:
若检测到用户的业务申请请求,获取所述用户的申请信息;
按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识;
判断所述申请特征参数是否满足预设条件;
若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息;
基于所述历史行为信息,获取所述用户的信用特征参数;
根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果。
本发明实施例中,若检测到用户的业务申请请求,获取所述用户的申请信息,按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识,然后判断所述申请特征参数是否满足预设条件,自动快速的对所述用户的业务申请请求进行初审,以便及时发现缺漏信息,若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息,再基于所述历史行为信息,获取所述用户的信用特征参数,最后基于所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果,风险审批自动智能化,且审核标准统一客观,可降低人力成本的同时提高风险审批的效率。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的风险审批方法的实现流程图;
图2是本发明实施例提供的风险审批方法步骤S103的具体实现流程图;
图3是本发明实施例提供的风险审批方法步骤S106的具体实现流程图;
图4是本发明实施例提供的风险审批方法步骤B1的具体实现流程图;
图5是本发明实施例提供的风险审批装置的结构框图;
图6是本发明实施例提供的服务器的示意图。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
图1示出了本发明实施例提供的风险审批方法的实现流程,该方法流程包括步骤S101至S106。各步骤的具体实现原理如下:
S101:若检测到用户的业务申请请求,获取所述用户的申请信息。
具体地,所述业务申请请求是用户用于向服务商如银行、贷款机构等机构申请业务。用户通过智能设备发送所述业务申请请求。在本发明实施例中,用户的申请信息可以包括用户的姓名、年龄、性别、学历、工资、借款情况、申请借贷金额等。所述申请信息中一定包括用于标识用户身份的用户标识,例如身份证号,每个用户的用户标识都是唯一的。
S102:按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识。
具体地,所述申请特征参数是指对所述业务申请请求的风险审批具有决策作用的参数。预设各类业务申请请求对应的指定特征模板,不同业务申请请求对应的指定特征模板中需求中进行风险审批所必需的申请特征不完全相同,若按指定特征模板从所述申请信息中提取的申请特征参数值为空值,则表示所述申请信息中缺少所述指定特征模板中的申请特征。本实施例中,预先指定一个或多个申请特征建立所述指定特征模板。根据所述指定特征模板,从申请信息中提取出与所述指定特征模板中申请特征对应的申请特征参数,例如,业务申请相关的信息如职业、收入、借款情况、申请贷款金额等。本发明实施例中,申请特征参数包括用户标识、申请数值等,用户标识可唯一标识用户,如身份证号码,申请数值为业务申请的金额如贷款金额。在本实施例中,提取的申请特征参数包括一个申请特征参数,或者多个申请特征参数的组合。
S103:判断所述申请特征参数是否满足预设条件。
具体地,所述预设条件是根据历史风险审批结果的大数据分析统计结果确定。若提取的申请特征参数是一个,则判断这一个申请特征参数是否满足对应的预设条件。若提取的申请特征参数是多个申请特征参数的组合,则判断提取的申请特征参数是否满足所述多个申请特征参数的组合对应的预设条件。若判断所述申请特征参数满足预设条件,则执行步骤S104;若判断所述申请特征参数不满足预设条件,则执行步骤S107。
示例性地,所述申请特征参数包括所述用户的年龄,所述步骤S103包括:判断所述用户的年龄是否到达业务申请的最小年龄。所述申请特征参数包括所述用户的年龄、职业和收入的组合,则分别判断所述用户的年龄、职业和收入是否满足预设条件,即判断所述用户的年龄是否达到所述业务申请的最小年龄,所述职业是否在指定职业范围内,所述收入是否达到预设的最低收入。若所述组合中至少一个申请特征参数不满足预设条件,则所述组合不满足预设条件。
可选地,所述步骤S103具体包括:根据所述申请特征参数中的
作为本发明的一个实施例,如图2所示,所述申请特征参数包括申请数值,上述S103具体包括:
A1:查所述申请数值对应的预设条件。
A2:根据所述预设条件判断所述申请特征参数中除所述申请数值以外的其他申请特征参数是否满足所述预设条件。
A3:若不满足,则若所述申请特征参数不满足所述预设申请特征,提示所述用户补录申请信息。
本发明实施例中,根据不同的申请数值设置不同的预设条件,通过查所述数值对应的预设条件,对所述业务申请请求中的申请特征参数进行初始审批,以便及时发现审批必需的申请特征参数,提高风险审批的效率。
S104:若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息。
本发明实施例中,所述历史行为信息包括用户的历史信用信息、历史交易记录。具体地,根据所述用户标识,从第三方平台调用所述用户的历史行为信息,例如,根据用户的身份证号码从第三方平台调取所述用户的信用信息、历史消费信息,可选地,在调取所述用户的历史行为信息之前,获取所述用户的授权。
S105:基于所述历史行为信息,获取所述用户的信用特征参数。
在本发明实施例中,不同的历史行为信息分别从不同的信息源获取,例如,交易机构服务器存储该用户的交易记录,医院服务器中存储的该用户的病历信息,支付平台服务器中存储的该用户的支付记录信息,航空公司服务器中存储的该用户的飞行记录信息,铁路部门服务器中存储的该用户的出行记录信息,旅游公司服务器中存储的该用户的旅游记录信息,交通管理部门服务中存储的该用户的交通违章记录信息。对获取的历史行为信息进行统计分析,获取所述用户的信用特征参数。
可选地,本实施例中包括多种行为类型的历史行为信息,例如支付记录信息、违章记录信息等,具体地,所述基于所述历史行为信息,获取所述用户的信用特征参数的步骤包括:获取所述历史行为信息的历史行为时间,将所述历史行为信息按所述行为类型分类,并将分类后的所述历史行为信息按所述历史行为时间从近至远排序,最后根据排序结果确定所述用户的信用特征参数。
在本发明实施例中,各个数据源将用户的历史行为信息沉淀下来(存储到数据库中),用户行为信息反映了用户在一段时长内做了哪些行为和/或发生了哪些系统事件,并且还记录了每一用户行为和/或系统事件的发生时间。用户行为(如:出行、支付、借款、违章等)和/或系统事件,所述系统事件可以包括:用户行为导致的事件、非用户行为导致的事件。服务器根据用户标识调取各个数据源中用户的历史行为信息,获取所述历史行为信息的历史行为时间,提取在特定事件发生之前预设时长(如:1个小时)内的信用特征参数,如是否为黑名单用户,如信用分数。其中,特定事件包括用户发送的业务申请请求。
S106:根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果。
具体地,在本发明实施例中,用户关联的智能终端包括所述用户的用户标识绑定的用户终端,还包括所述用户标识关联业务员的业务终端。所述风险审批的结果包括审批通过和审批不通过。
作为本发明的一个实施例,如图3所示,上述S106具体包括:
B1:基于所述申请特征参数与所述信用特征参数,确定所述业务申请请求对应的风险等级。
B2:调用所述风险等级对应的审批接口对所述业务申请请求进行风险审批。
在本发明实施例中,根据申请特征参数和信用特征参数对用户的业务申请请求的风险进行评估,确定所述业务申请请求对应的风险等级,对于风险等级越高的业务申请请求,对应的风险审批越严格。根据所述风险等级对应的审批接口对所述业务申请求进行风险审批。
可选地,预设多个级别的风控条件集合,所述风控条件集合是指包含申请特征参数和信用特征参数的集合。不同级别的风控条件集合中包含的申请特征参数和信用特征参数数量不一样或者数值不一样。在本实施例中,确定所述申请特征参数与所述信用特征参数所属的风控条件集合,根据确定的风控条件集合确定所述业务申请请求的风险等级。
作为本发明的一个实施例,所述申请特征参数包括申请数值,发明实施例提供的风险审批方法步骤B1的具体实现流程,具体包括:
B11:将所述信用特征参数输入至信用评分模型中,得到所述用户的信用评分。
B12:根据如下公式确定所述业务申请请求对应的审批数值:
Credit_quota=μ*Func(Credit_score)*Appli_quota (1);
其中,所述Credit_quota表示所述审批数值,u为自然数,表示所述信用评分Credit_score对应的调节系数,所述Appli_quota表示所述申请数值,Func为任意一个实现从[0,+∞)到[0,1)映射的单调递增函数。具体地,Func可取以下任意一个函数:
B13:根据预设的数值风险等级表与所述审批数值,确定所述业务申请请求对应的风险等级。
本实施例中,根据上述公式(1)计算获取所述业务申请请求对应的审批数值,根据所述审批数值与预设的数值风险等级表确定所述业务申请请的风险等级,可提高风险等级确定的准确性。
可选地,所述信用评分模型预先根据如下步骤进行训练:
(1)、获取设定数量的样本信用特征参数集,所述样本信用特征参数集中的样本信用特征参数标有信用评分;
(2)、建立包括输入层、卷积层、全连接层和输出层的神经网络模型;
(3)、在首次训练时,将所述神经网络模型各层节点之间的网络连接权值与阈值预先设置成满足预设条件的随机值,并设定所述样本信用特征参数的理想输出信用评分,从所述设定数量的样本信用特征参数集中随机选取设定数量的样本信用特征参数,输入至输入层,经过卷积层和全连接层,传送到输出层,获取所述样本信用指标的实际输出信用评分,完成一轮训练,并计算实际输出信用评分与理想输出信用评分的差值;
(4)、根据计算的差值,按照指定的学习规则对各层节点之间的网络连接权值和阈值进行调整,再次对所述神经网络模型进行训练,直至计算的差值不大于预设的阈值时,完成训练,训练好的神经网络模型即为所述信用评分模型。
具体地,建立包括输入层、卷积层、全连接层和输出层的神经网络模型,训练分如下,从样本信用特征参数集中随机选取样本信用特征参数输入神经网络模型,计算样本信用特征参数的输出值,在且仅在第一次训练时,将神经网络模型各层节点之间的网络连接权值、阈值预先设置成小的接近于0的随机值,并设定样本信用特征参数的理想输出值,将样本信用特征参数从输入层经过卷积层和全连接层,传送到输出层,获取该样本信用特征参数的实际输出值,完成一轮训练,计算实际输出值与理想输出值的差值。在本发明实施例中,根据如下公式计算该卷积神经网络的全局差值D:
其中,Dt为第t个样本信用特征参数的理想输出值It与实际输出值Rt的差值,n为正整数,且n为进行训练的样本信用特征参数的数量总数。按极小化误差的方法调整权矩阵。设置误差阈值,若D大于该阈值,则按照Delta学习规则对各层节点之间的网络连接权值和阈值进行调整,然后再次对神经网络模型进行训练,直至网络全局误差D不大于该阈值为止,结束训练,将该次训练的权值和阈值保存作为该神经网络模型的最优模型参数,得到训练好的神经网络模型。
在本发明实施例中,通过将该设定数量的样本信用特征参数输入至神经网络模型进行训练,确定该神经网络模型的最优模型参数,从而获得训练好的神经网络模型,通过将获取的所述用户的信用特征参数输入至训练好的神经网络模型即可快速获取所述用户的信用评分,进而提高信用评分的效率。
可选地,本发明实施例还包括步骤S107,所述步骤S107包括:
若提取的申请特征参数不满足所述多个申请特征参数的组合对应的预设条件,驳回所述业务申请请求。
本发明实施例中,若检测到用户的业务申请请求,获取所述用户的申请信息,按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识,然后判断所述申请特征参数是否满足预设条件,自动快速的对所述用户的业务申请请求进行初审,以便及时发现缺漏信息,若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息,再基于所述历史行为信息,获取所述用户的信用特征参数,最后基于所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果,风险审批自动智能化,且审核标准统一客观,可降低人力成本的同时提高风险审批的效率。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
对应于上文实施例所述的风险审批方法,图5示出了本申请实施例提供的风险审批装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图5,该风险审批装置包括:申请信息获取单元51,申请特征参数提取单元52,初始审批单元53,历史信息调取单元54,信用特征参数获取单元55,风险审批单元56,其中:
申请信息获取单元51,用于若检测到用户的业务申请请求,获取所述用户的申请信息;
申请特征参数提取单元52,用于按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识;
初始审批单元53,用于判断所述申请特征参数是否满足预设条件;
历史信息调取单元54,用于若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息;
信用特征参数获取单元55,用于基于所述历史行为信息,获取所述用户的信用特征参数;
风险审批单元56,用于根据所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果。
可选地,所述初始审批单元53包括:
条件查模块,用于查所述申请数值对应的预设条件;
初始审批模块,用于根据所述预设条件判断所述申请特征参数中除所述申请数值以外的其他申请特征参数是否满足所述预设条件;
补录提示模块,用于若不满足,则若所述申请特征参数不满足所述预设申请特征,提示所述用户补录申请信息。
可选地,所述风险审批单元56包括:
风险等级确定模块,用于基于所述申请特征参数与所述信用特征参数,确定所述业务申请请求对应的风险等级;
风险审批模块,用于调用所述风险等级对应的审批接口对所述业务申请请求进行风险审批。
可选地,所述申请特征参数包括申请数值,所述风险等级确定模块包括:
信用评分子模块,用于将所述信用特征参数输入至信用评分模型中,得到所述用户的信用评分;
审批数值计算子模块,用于根据如下公式确定所述业务申请请求对应的审批数值:
Credit_quota=μ*Func(Credit_score)*Appli_quota;
其中,所述Credit_quota表示所述审批数值,u为自然数,表示所述信用评分Credit_score对应的调节系数,所述Appli_quota表示所述申请数值,Func为任意一个实现从[0,+∞)到[0,1)映射的单调递增函数;
风险等级确定子模块,用于根据预设的数值风险等级表与所述审批数值,确定所述业务申请请求对应的风险等级。
可选地,所述信用评分模型预先根据如下步骤进行训练:
获取设定数量的样本信用特征参数集,所述样本信用特征参数集中的样本信用特征参数标有信用评分;
建立包括输入层、卷积层、全连接层和输出层的神经网络模型;
在首次训练时,将所述神经网络模型各层节点之间的网络连接权值与阈值预先设置成满足预设条件的随机值,并设定所述样本信用特征参数的理想输出信用评分,从所述设定数量的样本信用特征参数集中随机选取设定数量的样本信用特征参数,输入至输入层,经过卷积层和全连接层,传送到输出层,获取所述样本信用指标的实际输出信用评分,完成一轮训练,并计算实际输出信用评分与理想输出信用评分的差值;
根据计算的差值,按照指定的学习规则对各层节点之间的网络连接权值和阈值进行调整,再次对所述神经网络模型进行训练,直至计算的差值不大于预设的阈值时,完成训练,训练好的神经网络模型即为所述信用评分模型。
可选地,所述风险审批装置还包括:
请求驳回单元,用于若提取的申请特征参数不满足所述多个申请特征参数的组合对应的预设条件,驳回所述业务申请请求。
本发明实施例中,若检测到用户的业务申请请求,获取所述用户的申请信息,按所述业务申请请求对应的指定特征模板从所述申请信息中提取指定特征模板中申请特征对应的申请特征参数,所述指定特征模板是指所述业务申请请求进行风险审批所必需的申请特征,所述申请特征参数包括用户标识,然后判断所述申请特征参数是否满足预设条件,自动快速的对所述用户的业务申请请求进行初审,以便及时发现缺漏信息,若所述申请特征参数满足预设条件,则根据所述用户标识,获取所述用户的历史行为信息,再基于所述历史行为信息,获取所述用户的信用特征参数,最后基于所述申请特征参数与所述信用特征参数对所述业务申请请求进行风险审批,并向所述用户关联的智能终端输出所述风险审批的结果,风险审批自动智能化,且审核标准统一客观,可降低人力成本的同时提高风险审批的效率。
图6是本发明一实施例提供的服务器的示意图。如图6所示,该实施例的服务器6包括:处理器60、存储器61以及存储在所述存储器61中并可在所述处理器60上运行的计算机程序62,例如风险审批程序。所述处理器60执行所述计算机程序62时实现上述各个风险审批方法实施例中的步骤,例如图1所示的步骤101至106。或者,所述处理器60执行所述计算机程序62时实现上述各装置实施例中各模块/单元的功能,例如图5所示单元51至56的功能。
示例性的,所述计算机程序62可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器61中,并由所述处理器60执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序62在所述服务器6中的执行过程。
所述服务器6可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述服务器可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图6仅仅是服务器6的示例,并不构成对服务器6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述服务器还可以包括输入输出设备、网络接入设备、总线等。
所述处理器60可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器61可以是所述服务器6的内部存储单元,例如服务器6的硬盘或内存。所述存储器61也可以是所述服务器6的外部存储设备,例如所述服务器6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器61还可以既包括所述服务器6的内部存储单元也包括外部存储设备。所述存储器61用于存储所述计算机程序以及所述服务器所需的其他程序和数据。所述存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。
本文发布于:2023-04-13 03:21:02,感谢您对本站的认可!
本文链接:https://patent.en369.cn/patent/3/85758.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |