1.本公开涉及一种对基板进行成膜的装置和对基板进行成膜的方法。
背景技术:
2.作为对作为基板的例如半导体晶圆(以下,记载为“晶圆”)进行成膜的方法,公知有cvd(化学气相沉积:chemical vapor deposition)法、ald(原子层沉积:atomic layer deposition)法。在专利文献1中记载有一种成膜装置,该成膜装置在基板处理腔室内将基板设置于具备容纳基板的容纳面的板,利用cvd法进行成膜处理。另外,在专利文献2中记载有将晶圆载置于已配置到处理容器内的载置台上而利用ald法进行成膜处理的成膜装置。这些是对处理对象的晶圆逐张进行成膜的单张式的成膜装置。
3.现有技术文献
4.专利文献
5.专利文献1:日本特表平9-509534号公报
6.专利文献2:国际公开第2014/178160号公报
技术实现要素:
7.发明要解决的问题
8.本公开提供如下技术:在将基板载置于已由加热部加热的载置台而进行成膜处理时,能够改善成膜处理的面内均匀性。
9.用于解决问题的方案
10.本公开是对基板进行成膜的装置,其特征在于,该装置具备:
11.处理容器,其用于在真空气氛下向基板的表面供给反应
气体而进行成膜处理;
12.载置台,其设置于
所述处理容器内,用于载置所述基板,并且,设置有用于加热该基板的加热部;
13.升降轴,其以从下表面侧支承着所述载置台的状态以在上下方向上延伸的方式设置,穿过在所述处理容器设置的贯通口而与外部的升降机构连接起来;
14.壳体,其设置于所述处理容器与所述升降机构之间,覆盖所述升降轴的周围;
15.盖
构件,其配置成以与所述升降轴的侧周面之间隔着
间隙的方式包围该升降轴,以该盖构件的下方侧空间与上方侧空间之间的连通在除了所述间隙以外的部位处被阻止的方式在整周上安装到所述处理容器;
16.吹扫气体供给部,其向所述壳体内供给吹扫气体;以及
17.引导构件,其配置于与朝向所述处理容器内开口的所述间隙的端部相对的位置,形成有以如下方式进行引导的引导面:供给到所述壳体的所述吹扫气体在经由所述间隙向所述处理容器流入了之后,从朝向所述载置台的背面的方向逸散而流动。
18.发明的效果
19.根据本公开,在将基板载置于已由加热部加热的载置台而进行成膜处理时,能够
改善成膜处理的面内均匀性。
附图说明
20.图1是表示本公开的对基板进行成膜的装置的一实施方式的纵剖侧视图。
21.图2是表示设置到构成所述装置的处理容器的盖构件和引导构件等的分解立体图。
22.图3是构成所述装置的处理容器与波纹管之间的连接部处的纵剖侧视图。
23.图4是表示引导构件的作用的纵剖侧视图。
24.图5是表示未设置引导构件的比较例的作用的纵剖侧视图。
25.图6是表示载置到载置台的基板的温度分布的俯视图。
26.图7是表示引导构件的另一个例子的纵剖侧视图。
27.图8是表示引导构件的又一个例子的纵剖侧视图。
具体实施方式
28.<成膜装置>
29.参照图1而说明本公开的实施方式的、对基板进行成膜的装置(以下,记载为“成膜装置”)的结构。成膜装置1构成为在真空气氛下向作为成膜对象的、例如直径是300mm的圆形的晶圆10的表面供给反应气体而进行成膜处理的装置。
30.如图1所示,成膜装置1具备由例如铝等金属构成、且俯视形状呈大致圆形的处理容器2。在处理容器2的侧面以由闸阀23开闭自由的方式设置有用于在与外部的未图示的真空输送室之间进行晶圆10的交接的输入输出口22。
31.在比输入输出口22靠上方的位置以堆积于构成处理容器2的主体的侧壁211之上的方式设置有纵截面形状呈方型的排气管道24。排气管道24的内周面沿着其周向朝向处理容器2内开口成狭缝状,在排气管道24的外壁面形成有排气口25。构成为在该排气口25借助排气路径261连接有由真空泵、压力调节阀等构成的排气机构26,能够将处理容器2内设定成真空气氛。在排气管道24的上表面以封堵圆形的开口的方式夹着o形圈272设置有圆板状的顶板27。
32.<载置台>
33.在处理容器2内的排气管道24的内侧的位置配置有用于载置晶圆10的载置台3。载置台3由比晶圆10大一圈的圆板构成,由例如陶瓷、金属构成。在载置台3的内部埋设有用于加热晶圆10的加热部31,在载置台3的侧方设置有包围载置台3的侧周面的罩构件32。
34.另外,在罩构件32与处理容器2的侧壁211之间设置有内环33,由此,处理容器2的内部划分成载置台3的上方的空间11和载置台3的下方的底部区域12。在这些罩构件32与内环33之间形成有用于使底部区域12内的气氛与排气管道24连通的流通路径34。
35.在载置台3的下方以利用升降机构281升降自由的方式设置有多个支承销28,该多个支承销28在晶圆10的交接时从下表面侧支承并抬起晶圆10。在图1中,附图标记35是指支承销28用的贯通孔。
36.<升降轴和升降机构>
37.在载置台3的下表面中央连接有贯通处理容器2的底面并在上下方向上延伸的棒
状的升降轴41,在处理容器2的外部设置有使升降轴41在上下方向上移动的升降机构4。升降机构4水平配置于处理容器2的下方,具备供升降轴41的下端连接的升降板42、活塞杆43、以及马达44。这样一来,载置台3构成为利用升降机构4在对晶圆10进行成膜的处理位置(图1所示的位置)与交接位置之间升降自由,该交接位置位于该处理位置的下方,在该交接位置处经由输入输出口22与外部的未图示的输送机构之间进行晶圆10的交接。
38.<贯通口和壳体>
39.如图1、图3所示,在处理容器2的底面212形成有用于供升降轴41穿过的贯通口20。另外,在处理容器2与升降机构4之间、例如贯通口20的口缘与升降板42之间设置有覆盖升降机构4的周围的壳体。该例子中的壳体由波纹管45构成,该波纹管45使处理容器2内的气氛与外部划分开,随着升降板42的升降动作而伸缩,该波纹管45以从侧方覆盖升降轴41的周围的方式安装。
40.<喷头>
41.在处理容器2的顶板27的下表面以与载置于载置台3的晶圆10相对的方式配置有喷头5。该喷头5具备气体扩散空间51,在其下表面分散地形成有许多气体喷出口52。经由在顶板27形成的气体导入路径271从气体供给系统6向喷头5供给气体。另外,喷头5的外缘向下方延伸,以与罩构件32之间形成排气用的开口53、并且在载置台3与喷头5之间形成有处理空间13的方式构成。这样一来,载置台3的上表面暴露于处理空间13,载置台3的下表面暴露于底部区域12。
42.<气体供给系统>
43.针对气体供给系统6,以在晶圆10对钨膜(w膜)进行成膜的情况为例进行说明。该例的成膜装置1构成为,向处理容器2交替地供给两种气体作为反应气体,利用ald法对w膜进行成膜。作为反应气体,能够使用含有w的原料气体和含有氢的还原性的反应气体(还原气体)。
44.作为原料气体,使用例如五氯化钨(wcl5)气体,wcl5的供给源61经由原料气体供给路径611、气体导入路径271与喷头5连接。
45.作为还原气体,使用例如氢气(h2气体),h2气体的供给源62经由反应气体供给路径621、气体导入路径271与喷头5连接。
46.在原料气体供给路径611和反应气体供给路径621分别设置有进行气体的供给、断开的阀v1、v2、进行气体供给量的调整的流量调整部612、622、以及积存罐613、623。wcl5气体和h2气体分别暂时积存于积存罐613、623,当在这些积存罐613、623内升压到预定的压力之后向处理容器2内供给。
47.另外,原料气体供给路径611和反应气体供给路径621分别借助置换气体供给路径631、641与置换气体的供给源63、64连接。作为置换气体,能够使用氮气(n2气体)、氩气(ar气体)等非活性气体。置换气体供给路径631、641分别具备流量调整部632、642和气体供给、断开用的阀v3、v4。
48.<盖构件>
49.如图1和图3所示,在贯通口20以包围升降轴41的方式配置有盖构件71,该盖构件71以封堵贯通口20的方式插入处理容器2与升降轴41之间。另外,在盖构件71与波纹管45之间配置有筒状构件72,而且,在处理容器2的底面212设置有支承这些盖构件71、筒状构件72
的环构件73。
50.盖构件71是封堵设置到处理容器2的底面212的贯通口20与升降轴41之间的空间的筒状的构件。也如图2所示,在构成盖构件71的主体的圆筒构件711的上端形成有凸缘712,盖构件71使该凸缘712的下表面卡定于环构件73而配置于贯通口20与升降轴41之间。凸缘712的上表面大致水平地形成。
51.该例中的盖构件71的圆筒部711的下部形成为厚度尺寸较小的套筒710。圆筒部711的内周面与套筒710的内周面连续,由它们形成盖构件71的内周面。
52.另外,盖构件71的上表面具备凹部714,该凹部714具有开口径从下方侧朝向上方侧逐渐变大的锥面713。该凹部714形成于盖构件71的中央,以开口径随着远离升降轴41而变大、开口的缘部715(锥面713的上缘)与凸缘712连接的方式形成。
53.如图3所示,盖构件71以在升降轴41的侧周面与盖构件71(圆筒部711、套筒710)的内周面之间形成第1间隙81的方式配置,从而升降轴41以在盖构件71的内侧在上下方向上移动自由的方式构成。
54.该盖构件71以其下方侧空间(波纹管45内的空间)与上方侧空间(处理容器2内的空间)之间的连通在除了所述第1间隙81以外的部位处被阻止的方式在整周上安装于处理容器2。
55.筒状构件72成为在圆筒状的主体721的上端设置有凸缘722的构造,通过使凸缘722卡定于环构件73,配置于盖构件71与波纹管45之间。如图3所示,筒状构件72成为在将盖构件71、筒状构件72配置到预定位置时,筒状构件72的下端成为位于比盖构件71(套筒710)的下端靠下方的位置的高度尺寸。
56.环构件73配置、固定于处理容器2的底面212上的贯通口20的周围,构成为使盖构件71的凸缘712和筒状构件72的凸缘722卡定,并支承这些盖构件71和筒状构件72。在环构件73的上表面侧内周缘形成有用于将筒状构件72的凸缘722嵌入并固定于环构件73的上表面与盖构件71的凸缘712的下表面之间的台阶731。
57.<吹扫气体供给部>
58.另外,如图1和图3所示,成膜装置1设置有向波纹管45内供给吹扫气体的吹扫气体供给部74。在环构件73的下表面形成有用于向波纹管45的内侧供给作为吹扫气体的非活性气体、例如n2气体的未图示的槽部。通过将形成有该槽部的环构件73固定于处理容器2的底面212上,由这些槽部和处理容器2围成的空间成为吹扫气体流路741。
59.设置到吹扫气体流路741的基端侧的端口部742与在处理容器2形成的吹扫气体供给路径213连接,该吹扫气体供给路径213如图1所示这样借助配管651与吹扫气体供给源65连接。在该配管651设置有气体供给、断开用的阀v5和流量调整部652。
60.在吹扫气体流路741的末端设置有朝向环构件73的内周面开口的例如4个吹扫气体喷出孔743(参照图2)。这些吹扫气体喷出孔743沿着环构件73的内周面的周向大致等间隔地配置。
61.吹扫气体供给源65、吹扫气体供给路径213、吹扫气体流路741、吹扫气体喷出孔743等构成本实施方式的吹扫气体供给部4。
62.吹扫气体供给部74借助波纹管45向处理容器2的底部区域12供给吹扫气体。若参照图3而简单地说明波纹管45内的吹扫气体的流动,则如以虚线箭头表示这样,从吹扫气体
喷出孔743供给到波纹管45内的吹扫气体在形成到筒状构件72的外周面与波纹管45的内周面之间的间隙内从上向下流动。接下来,吹扫气体到达筒状构件72的下端,向波纹管45的内侧的空间内扩展,并且,流入已形成到升降轴41与盖构件71之间的第1间隙81内。然后,在第1间隙81内向上流通而如随后论述那样流入处理容器2,向底部区域12内扩展。通过如此向底部区域12供给吹扫气体,抑制了从喷头5供给的反应气体经由流通路径34进入底部区域12,抑制了反应气体向载置台3的背面的蔓延。
63.<引导构件>
64.如图1~图3所示,在底部区域12的、盖构件71与载置台3之间设置有具备引导吹扫气体的流动的引导面的引导构件9。引导构件9配置于与朝向处理容器2内开口的第1间隙81的端部811相对的位置,引导面起到以使吹扫气体从朝向载置台3的背面的方向逸散而流动的方式引导该吹扫气体的作用。如图3所示,第1间隙81的端部811是第1间隙81的上端,且是在升降轴41的侧周面与盖构件71的内周面之间形成的环状的开口。引导构件9通过配置于该端部811的上方侧的位置,成为与该端部811相对的状态。
65.如图2所示,引导构件9由环状的构件构成。在该例子中,环状的构件由厚度一致的板状构件构成,其下表面构成引导面91。引导构件9的中央的开口部92形成供升降轴41贯穿的区域,引导构件9(开口部92的内周面)以隔着与升降轴41的侧周面之间形成的第2间隙82而在盖构件71的上方位置处包围升降轴41的方式配置。
66.另外,引导构件9配置于其内缘(开口部92的内周面)相对于盖构件71的内周面靠近升降轴41侧的位置。因而,以在升降轴41的侧周面与引导构件9的内缘之间形成的第2间隙82的尺寸l2(参照图4)比在升降轴41的侧周面与盖构件71之间形成的第1间隙81的尺寸l1小的方式形成。由此,从第1间隙81朝向上方的吹扫气体的通过第2间隙82之际的压力损失变大,抑制该吹扫气体朝向载置台3的背面流动。
67.例如第1间隙81的尺寸l1与第2间隙82的尺寸l2之比(l1/l2)设定成0.5~2.5的范围内的值,优选设定成比1大且2.5以下的范围内的值。若使尺寸l2过小,则在成膜装置1的装配时难以进行沿着升降轴41的周向形成均匀的第2间隙82的位置调节。另一方面,若使尺寸l2过大,则引导构件9的作用难以实现,通过第2间隙82的吹扫气体的量有可能增加。但是,尺寸l1、尺寸l2考虑成膜处理的类别、成膜装置的尺寸、随后论述的第3间隙的尺寸l3而设定,若列举各尺寸的一个例子,则第1间隙81的尺寸l1是1mm~5mm,第2间隙82的尺寸l2是2mm。
68.另外,引导构件9以从上表面侧看来覆盖盖构件71的凹部714的开口的方式设置,引导构件9的外缘配置于比凹部714的开口的缘部715靠外方的位置。在该例子中,引导构件9的外缘附近的区域以与在凹部714的外方形成的凸缘712的上表面相对的方式设置。这样一来,如图3和图4所示,在引导构件9的下表面(引导面)91与盖构件71的凹部714之间形成有纵截面形状呈大致三角形的环状的空间716。
69.而且,引导构件9以与盖构件71的上表面之间形成有供吹扫气体流通的间隙(第3间隙)83的方式配置于盖构件71的上方位置。该第3间隙83是在俯视观察时在引导构件9与盖构件71(凸缘712)重叠的位置处形成于引导构件9的下表面与盖构件71(凸缘712)的上表面之间的间隙。第3间隙83的尺寸l3以比所述第2间隙的尺寸l2大的方式设定。这样一来,吹扫气体易于经由压力损失比第2间隙82的压力损失小的第3间隙83流动开来。根据该结构,
吹扫气体由引导构件9的引导面91引导,沿着处理容器2的底面212朝向横向流动。
70.例如第3间隙83的尺寸l3与第2间隙82的尺寸l2之比(l3/l2)设定成1.5~3.5的范围内的值。该比可根据吹扫气体的流量、成膜处理的类别等设定,若超过所述的范围的上限,则限制吹扫气体的流动方向的引导构件9的作用有可能减弱。另一方面,若l3/l2的值低于所述范围的下限,则在第2间隙82、第3间隙83流动之际的压力损失的差异变小,担心经由第2间隙82向底部区域12流入的吹扫气体的比例增加。因此,优选l3/l2的值设定成已述的范围内的值。若列举各尺寸的一个例子,则第2间隙82的尺寸l2是2mm,第3间隙83的尺寸l3是5mm。另外,若归纳第1间隙81的尺寸l1、第2间隙82的尺寸l2以及第3间隙83的尺寸l3的关系,则优选l2<l1<l3。
71.如图1和图2所示,这样的引导构件9在引导构件9与盖构件71的凸缘712相对的区域中利用例如棒状的支承构件93安装于盖构件71的上表面。例如支承构件93设置有多个,沿着周向等间隔地配置于盖构件71的周向的多个部位。引导构件9的大小、第1间隙81的尺寸l1、第2间隙82的尺寸l2以及第3间隙83的尺寸l3可根据处理容器2、底部区域12、载置台3、升降轴41的大小、成膜处理的类别等适当设定。
72.<控制部>
73.如图1所示,具备控制构成成膜装置1的各部的动作的控制部100。该控制部100由例如具备未图示的cpu和存储部的计算机构成,在存储部存储有编入有针对为了进行随后论述的w膜的成膜而需要的控制的步骤(命令)组的程序。程序储存于例如硬盘、光盘、磁光盘、存储卡、非易失性存储器等存储介质,从该存储介质加载于计算机。
74.<成膜装置中的w膜的成膜>
75.接下来,对使用具备以上进行了说明的结构的成膜装置1而进行w膜的成膜处理的方法进行说明。
76.首先,在预先将处理容器2内减压到真空气氛之后,使载置台3下降到交接位置,利用未图示的外部的输送机构与支承销28之间的协作作业,将晶圆10载置于由加热部31加热到成膜温度的载置台3上。在使用了wcl5气体和h2气体作为反应气体的w膜的成膜处理中,成膜温度是约450℃前后的温度。另外,从吹扫气体供给部74以4.5升/分~28升/分的范围内的28升/分的流量向波纹管45内供给吹扫气体(n2气体)。
77.若晶圆10载置于载置台3上,则关闭闸阀23,使载置台3上升到处理位置而形成处理空间13,并且,进行处理容器2内的压力调整。
78.成膜装置1内利用排气机构26借助排气管道24排气,因此,处理空间13内的气氛气体经由在喷头5与内环32之间形成的开口53向排气管道24流入,向成膜装置1的外部排气。另一方面,成膜装置1内的底部区域12的气氛气体也利用排气机构26的排气经由流通路径34从排气管道24排气。
79.接下来,借助气体供给系统6和喷头5向加热到成膜温度的晶圆10的表面按照wcl5气体
→
n2气体
→
h2气体
→
n2气体的顺序反复进行反应气体(wcl5气体、h2气体)和置换用的气体(n2气体)的供给。其结果,吸附到晶圆10的两种反应气体相互反应而形成钨的分子层,该分子层层叠而对钨膜(w膜)进行成膜。
80.这样一来,使上述的反应气体、置换气体的供给循环反复几十次~几百次程度,对目的的膜厚的w膜进行成膜。之后,停止气体的供给,使载置台3下降到交接位置,打开闸阀
23而取出晶圆10。
81.接下来,对吹扫气体的流动进行说明。从吹扫气体喷出孔743流入到波纹管45内的吹扫气体如已述那样向波纹管45的内侧的空间整体扩展,并且,流入在升降轴41与盖构件71之间形成的第1间隙81内。其中,原料气体中的wcl5具有易于扩散的性质,存在如下情况:wcl5分子的一部分克服经由流通路径34向排气管道24流入的吹扫气体的流动而扩散,由此进入底部区域12内。进入到底部区域12的wcl5分子若在载置台3的背面侧分解,形成堆积物,则载置台3的热容量在面内变得不均匀,有可能阻碍加热部31对晶圆w的均匀的加热。若晶圆w的加热温度在面内变得不均匀,则w膜的膜厚的面内均匀性也有可能降低。
82.因此,本例的成膜装置1为了抑制随着wcl5分子的扩散而堆积物向载置台3的背面的形成,以以往流量的6倍左右的28升/分的比较大的流量进行吹扫气体的供给。这样的大流量的吹扫气体在间隙尺寸l1较窄的第1间隙81内朝向上方(载置台3)以较大的流速猛地流动。然后,吹扫气体从第1间隙81的端部811朝向上方喷出,但在吹扫气体喷出的位置配置有引导构件9。因此,吹扫气体与引导构件9的下表面(引导面)碰撞,如在图4中以虚线的箭头表示这样,沿着引导构件9的引导面91向横向改变流动的朝向而在第3间隙83流通开来。
83.其中,在升降轴41与引导构件9之间也形成有第2间隙82,但第2间隙82的尺寸l2设定得比第3间隙83的尺寸l3小。另外,第3间隙83的尺寸l3以比第1间隙81的尺寸l1、第2间隙82的尺寸l2大的方式形成。
84.因而,第2间隙82的压力损失比第3间隙83的压力损失大,吹扫气体难以流动。因此,对于吹扫气体的大部分,易于形成从第1间隙81朝向第3间隙83的流动。其结果,吹扫气体从朝向载置台3的背面的方向逸散而向横向改变行进路线,沿着处理容器2的底面212流入底部区域12。然后,吹扫气体一边在底部区域12内缓慢地改变流动方向,一边经由流通路径34朝向排气管道24流通开来。此外,即使一部分吹扫气体通过了第2间隙82,其流量也极其微小,流动的势头弱化。
85.而且,与引导构件9的引导面91碰撞了的吹扫气体的一部分朝向在引导构件9与凹部714之间形成的空间716内改变流动方向而形成漩涡。形成了漩涡的吹扫气体沿着凹部714的锥面713朝下流动,接下来,沿着升降轴41的侧周面上升,再次到达引导构件9。吹扫气体由于该漩涡的形成而流动的势头更加弱化,以流速变小的状态向底部区域12流入。由于以上进行了说明的作用,在第3间隙83流通时的吹扫气体的流速比在第1间隙81流通时的吹扫气体的流速小,向底部区域12流入时的流速进一步变小。
86.本技术的发明人等对将吹扫气体的供给流量设定成28slm的情况进行了流体模拟,结果确认到以下这样的吹扫气体的流动。即,发现:吹扫气体从第3间隙83端部沿着处理容器2的底面212向横向流入底部区域12。然后,进入到比第3间隙83宽的空间的吹扫气体降低流速,并且,缓慢地改变流动方向,向已述的流通路径34流动开来。另外,确认到:在第3间隙83流通时的流速减少成在第1间隙81流通时的流速的1/5左右,向底部区域12内扩散时的流速进一步变小。
87.如此,吹扫气体向处理容器2的底部区域12流入开来之际的流速较小,而吹扫气体以大流量供给,因此,底部区域12由吹扫气体充满,成为压力相对于处理空间13的压力上升了的状态。由此,在成膜处理的期间内,能够提升吹扫气体在较窄的流通路径34通过之际的流速,抑制wcl5经由流通路径34进入底部区域12。因而,抑制反应气体向载置台3的背面的
蔓延,抑制堆积物向载置台3的背面的形成。
88.根据上述的实施方式,供给到波纹管45内的吹扫气体在经由在升降轴41与盖构件71之间形成的第1间隙81流入到处理容器2内之后,由引导构件9以从朝向载置台3的背面的方向逸散而流动的方式引导。
89.因此,抑制从第1间隙81喷出来的吹扫气体沿着升降轴41向上方流动、并与载置台3的背面碰撞。由此,能够抑制载置台3的温度在吹扫气体所碰撞的位置处降低的情况,抑制载置台3的加热状态的面内均匀性的降低。其结果,载置到载置台3的晶圆10由加热部31以在面内具有良好的均匀性的方式加热,因此,维持成膜处理的面内均匀性,在晶圆w形成的w膜的膜厚、膜质的面内均匀性也变得良好。
90.其中,作为比较形态,参照图5而对不具备引导构件9的结构进行说明。在该情况下,大流量的吹扫气体在以高速在间隙尺寸l1较窄的第1间隙81中流动了之后,如以虚线表示这样,从第1间隙81的端部811朝向上方猛地喷出。并且,喷出来的吹扫气体在维持较高的流速的状态下到达载置台3的背面,因此,在载置台3的背面,成为吹扫气体集中碰撞该载置台3的背面的局部区域的状态。吹扫气体的温度比载置台3的温度低,因此,在吹扫气体所碰撞的区域中,由吹扫气体吸热而温度降低。因此,在载置台3的面内局部地形成有温度较低的区域,载置台3的加热状态的面内均匀性恶化。其结果,晶圆10的面内的温度分布产生偏差,成膜处理在面内不均匀地进行。
91.随着半导体器件的微细化,将膜埋入纵横比较高的凹部,因此,存在增加反应气体的流量的倾向。在该情况下,为了抑制反应气体分子向载置台3的背面的蔓延,向处理容器2的底部区域12供给的吹扫气体的供给流量从以往的流量增量到6~7倍左右。其原因在于,若如已述那样由于反应气体分子的蔓延而在载置台3的背面形成堆积物,则产生载置台3的加热不均,载置台3的温度的面内均匀性恶化。然而,如使用图5而进行了说明这样,若不采取任何对策就增加吹扫气体的流量,则载置台3的温度的面内均匀性由于吹扫气体而降低的这样的问题明显化。
92.另外,在越受到堆积物向载置台3的背面的形成的影响、越需要精密的温度调节的成膜处理中,晶圆10的微小的温度变化给膜厚、膜质带来的影响较大。因此,为了维持成膜处理的面内均匀性,也存在对晶圆温度要求较高的面内均匀性的处理。因而,在经由升降轴41与盖构件71之间的间隙(第1间隙81)供给吹扫气体的结构中,为了改善成膜处理的面内均匀性,增加吹扫气体的流量、同时能够针对载置台3的温度确保较高的面内均匀性的技术是有效的。
93.这一点,在使用图1~图4而进行了说明的成膜装置1的结构中,吹扫气体能够从第3间隙83向横向以低速流入底部区域12内。因此,即使在供给大流量的吹扫气体的情况下,也能够抑制吹扫气体以高速与载置台3碰撞的流动的形成,维持载置台3的加热状态的面内均匀性。
94.另外,构成成膜装置2的构件在公差的范围内具有加工误差,因此,也存在在升降轴41与盖构件71之间形成的第1间隙81的尺寸l1在周向上不一致的情况。在该情况下,若从不均匀的第1间隙81喷出来的吹扫气体与载置台3的背面碰撞,则沿着周向观察该吹扫气体所碰撞的区域,也产生吹扫气体的碰撞量的不均匀。其结果,载置台3的加热状态的面内均匀性进一步降低。
95.这一点,在本公开的成膜装置1中,通过设置引导构件9,避免从第1间隙81喷出来的吹扫气体与载置台3的背面碰撞。因此,即使尺寸l1在周向上不均匀地形成了,吹扫气体从第1间隙81不均匀的喷出对载置台3的温度的面内均匀性带来影响的可能性也较小。
96.<评价试验>
97.接下来,参照图6而对载置台温度的评价进行说明。在图1所示的成膜装置1中,从吹扫气体供给部74以28slm的流量向处理容器2内供给了作为吹扫气体的n2气体。另外,将具备温度检测功能的晶圆载置于由加热部31加热到440℃的载置台3并进行了晶圆温度的检测。在具备温度检测功能的晶圆中,成为能够检测晶圆面内的121个部位的温度的结构。引导构件9设为使用图1~图3而进行了说明的结构,第1间隙81的尺寸l1设为2mm,第2间隙82的尺寸l2设为2mm,第3间隙83的尺寸l3设为5mm,处理容器2内的压力设为45pa(实施例)。另外,在不具备引导构件9的结构中也进行了同样的评价(比较例)。
98.将实施例的结果表示在图6的(a)中,将比较例的结果表示在图6的(b)中。实际的测定结果成为对晶圆的不同的温度范围分配不同的彩的彩图像,在图6中示出有据此对图像进行灰度等级转换而成的结果。在该图6中,对温度最高的高温区域101和温度最低的低温区域102分别标注附图标记。
99.若观察图6的(a)的实施例的结果,则发现:晶圆的中心成为低温区域101,周缘成为高温区域102,晶圆的面内温度呈大致同心圆状变化为相同的温度,温度的偏差较小。在成膜处理中,晶圆的温度分布优选成为同心圆状,因此,确认到形成适于成膜处理的温度分布。
100.另一方面,根据图6的(b)的比较例的结果,局部地存在高温区域101和低温区域102,未成为同心圆状的温度分布,沿着周向形成有不均匀的温度分布。另外,晶圆面内的温度差也较大。
101.根据实施例和比较例的结果可理解:由于引导构件9的有无,晶圆的面内温度的均匀性大幅度不同,通过设置引导构件9,能够改善晶圆的面内温度的均匀性。另外,在图6的(b)的结果中发现:局部地存在低温区域102,因此,温度在吹扫气体所到达的载置台3的背面降低,载置台温度直接反映于晶圆。而且,若观察图6的(b)的结果,则可知:低温区域102集中于晶圆10的单侧。如已述那样,推测为:由于升降轴41和盖构件71的安装的公差,吹扫气体的吹出量在周向上变得不均匀,这经由载置台温度反映于晶圆的温度,在晶圆上形成了偏置的温度分布。
102.另一方面,在相同的成膜装置1中,在设置有引导构件9的结构中,如图6的(a)所示,改善了晶圆温度的面内均匀性。由此,可理解:由于设置有引导构件9,即使在由于升降轴41和盖构件71的安装的公差而吹扫气体的吹出量在周向上变得不均匀的情况下,给载置台温度带来影响的可能性也较小。
103.另外,对于实施例和比较例,进行了吹扫气体的流体模拟。它们的模拟结果与使用图4、图5而进行了说明的吹扫气体的流动同样。即,在实施例的结构中,缩小在第3间隙83流动的吹扫气体的流速,该流速在底部区域12中进一步降低,载置台3的背面处的吹扫气体的流速是0.3m/s左右。另一方面,在比较例的结构中,吹扫气体经由第1间隙81朝向载置台3以较大的流速喷出,因此,与载置台3的背面碰撞的吹扫气体的流速最大为6m/s左右。如此,根据流体模拟的结果也发现:通过设置引导构件9,载置台3的背面附近的吹扫气体的流速变
小,几乎不给载置台3的温度带来影响。
104.而且,在实施例的结构和比较例的结构中,将晶圆10载置于载置台3,使用wcl5气体和h2气体作为反应气体,使用n2气体作为置换气体,利用上述的方法对w膜进行成膜,求出来膜厚的面内均匀性。分别对多张晶圆进行成膜,其平均膜厚为其结果,发现:实施例的膜厚的面内均匀性是3.6%,而比较例是4.5%,利用实施例的结构改善膜厚的面内均匀性。另外,未通过目视发现对载置台3背面进行的成膜,确认由于吹扫气体向底部区域12的供给,抑制反应气体向载置台3背面的蔓延。
105.实施例将第1间隙81和第2间隙82设定成相同的尺寸,与比较例相比,改善了晶圆的面内温度、膜厚的面内均匀性。因而,在将第1间隙81的尺寸l1设定得比第2间隙82的尺寸l2小的情况下,能够预料晶圆的面内温度、膜厚的面内均匀性的进一步的改善。
106.在以上进行了说明的实施方式中,引导构件的引导面未必需要以与盖构件71的凸缘相对的方式配置。例如,如图7和图8所示,也可以将由环状的板状构件构成的引导构件94、95以相对于盖构件71倾斜的方式配置。图7所示的例子是配置为引导构件94的外缘的高度位置比引导构件94的内缘的高度位置高的例子。另外,图8所示的例子是配置为引导构件95的外缘的高度位置比引导构件95的内缘的高度位置低的例子。在这些情况下,引导构件94、95的下表面与盖构件71的上表面之间的最接近的部位的尺寸成为第3间隙的尺寸l3。即使如此配置引导构件94、95,经由第1间隙81流入到处理容器2的吹扫气体也如在图中以虚线表示这样由引导构件94、95的引导面以从朝向载置台3的背面的方向逸散而流动的方式引导。
107.另外,引导构件未必限于环状的构件。也可以将小片状的构件以包围升降轴41的周围的方式排列配置于盖构件71的上方位置,利用它们的背面的集合构成引导面。其原因在于,通过缩小小片状的构件彼此的间隙来增大压力损失,能够降低经由这些间隙朝向载置台3的吹扫气体的流动的势头而向侧方引导吹扫气体的流动。
108.而且,在引导构件由环状的构件构成的情况下,引导构件无需形成为板状,也可以是厚度在径向上变化的构件,在引导构件的下表面形成的引导面也可以是曲面。另外,也可以是引导构件的外缘配置于比盖构件71的凹部714的开口的缘部715靠内方的位置的结构。在这些情况下,对于在引导构件的下表面与盖构件71的上表面之间形成的第3间隙,两者最接近的部位的尺寸成为第3间隙的尺寸l3。在这些引导构件中,能够将吹扫气体的流动方向引导成从朝向载置台3的背面的方向逸散而流动,因此,作为结果,能够确保载置台3的温度较高的面内均匀性,改善成膜处理的面内均匀性。
109.而且,壳体并不限定于波纹管45,也可以由例如包围升降机构4整体的箱体构成。再者,未必需要在盖构件71的上表面形成凹部714。另外,即使在形成有凹部714的情况下,也并不限定于具有上述的结构的锥面713的凹部714,也可以是例如纵截面呈矩形形状的缺口。
110.再者,向成膜装置供给反应气体的结构并不限于喷头,也可以是单一的开口。此外,在成膜装置中,对晶圆的表面进行成膜的方法并不限于ald法。本发明也能够适用于执行cvd法的成膜装置。在实施cvd、ald时,也可以使用等离子体作为反应气体的活性化手段。
111.另外,在利用上述的成膜装置1对w膜进行成膜的情况下,作为原料气体,除了使用wcl5气体以外还能够使用六氯化钨(wcl6)气体,作为还原气体,除了使用h2气体以外还能够
使用甲硅烷(sih4)气体、乙(b2h6)气体、氨(nh3)气体、磷化氢(ph3)气体、二氯甲硅烷(sih2cl2)气体。
112.应该认为此次所公开的实施方式在全部的点都是例示,并非限制性的。上述的实施方式也可以在不脱离所附的权利要求书及其主旨的范围内以各种形态进行省略、置换、变更。
技术特征:
1.一种对基板进行成膜的装置,其具备:处理容器,其用于在真空气氛下向基板的表面供给反应气体而进行成膜处理;载置台,其设置于所述处理容器内,用于载置所述基板,并且,设置有用于加热该基板的加热部;升降轴,其以从下表面侧支承着所述载置台的状态以在上下方向上延伸的方式设置,穿过在所述处理容器设置的贯通口而与外部的升降机构连接起来;壳体,其设置于所述处理容器与所述升降机构之间,覆盖所述升降轴的周围;盖构件,其配置成以与所述升降轴的侧周面之间隔着间隙的方式包围该升降轴,以该盖构件的下方侧空间与上方侧空间之间的连通在除了所述间隙以外的部位处被阻止的方式在整周上安装到所述处理容器;吹扫气体供给部,其向所述壳体内供给吹扫气体;以及引导构件,其配置于与朝向所述处理容器内开口的所述间隙的端部相对的位置,形成有以如下方式进行引导的引导面:供给到所述壳体的所述吹扫气体在经由所述间隙向所述处理容器流入了之后,从朝向所述载置台的背面的方向逸散而流动。2.根据权利要求1所述的装置,其中,在将所述升降轴的侧周面与所述盖构件之间的所述间隙称为第1间隙时,所述引导构件是如下环状的构件:以隔着作为在所述引导构件与所述升降轴的侧周面之间形成的间隙的第2间隙而包围该升降轴的方式配置,并且,以所述第2间隙的尺寸比所述第1间隙的尺寸小的方式形成。3.根据权利要求2所述的装置,其中,所述第1间隙的尺寸与所述第2间隙的尺寸之比是比1大且2.5以下的范围内的值。4.根据权利要求2或3所述的装置,其中,所述引导构件隔着作为在所述引导面与所述盖构件的上表面之间形成的间隙的第3间隙而配置于该盖构件的上方位置,并且,以所述第3间隙的尺寸比所述第2间隙的尺寸大的方式配置。5.根据权利要求4所述的装置,其中,所述第3间隙的尺寸与所述第2间隙的尺寸之比是1.5~3.5的范围内的值。6.根据权利要求1~5中任一项所述的装置,其中,在所述盖构件的上表面形成有具有开口径从下方侧朝向上方侧逐渐变大的锥面的凹部,所述引导构件以从上表面侧看来覆盖该凹部的开口的方式配置,从而在形成于所述引导构件与所述凹部之间的空间内形成所述吹扫气体的漩涡。7.根据权利要求6所述的装置,其中,所述引导构件的外缘配置于比所述凹部的开口的缘部靠外方的位置。8.一种对基板进行成膜的方法,在该方法中使用装置,该装置具备:处理容器,其用于在真空气氛下向基板的表面供给反应气体而进行成膜处理;载置台,其设置于所述处理容器内,用于载置所述基板,并且,设置有用于加热该基板的加热部;升降轴,其以从下表面侧支承着所述载置台的状态以在上下方向上延伸的方式设置,穿过在所述处理容器设置的贯通口而与外部的升降机构连接起来;
壳体,其设置于所述处理容器与所述升降机构之间,覆盖所述升降轴的周围;盖构件,其配置成以与所述升降轴的侧周面之间隔着间隙的方式包围该升降轴,以该盖构件的下方侧空间与上方侧空间之间的连通在除了所述间隙以外的部位处被阻止的方式在整周上安装到所述处理容器;以及引导构件,其配置于与朝向所述处理容器内开口的所述间隙的端部相对的位置,形成有用于引导气体的流动方向的引导面,该方法包括:加热在所述载置台载置的基板的工序;在进行着所述基板的加热的期间内向所述壳体内供给吹扫气体的工序;以及利用所述引导构件的引导面以如下方式引导所述吹扫气体的流动的工序:供给到所述壳体的所述吹扫气体在经由所述间隙向所述处理容器流入了之后,从朝向所述载置台的背面的方向逸散而流动。
技术总结
本发明提供一种对基板进行成膜的装置和对基板进行成膜的方法。配置到用于在真空气氛下向基板的表面供给反应气体而进行成膜处理的处理容器内的升降轴以从下表面支承着基板的载置台的状态以在上下方向上延伸的方式设置,穿过在处理容器设置的贯通口而与外部的升降机构连接起来。壳体覆盖升降轴的周围,盖构件以隔着间隙包围升降轴的方式配置。设置有以如下方式进行引导的引导构件:从吹扫气体供给部供给到壳体的吹扫气体在经由间隙向处理容器流入了之后,从朝向载置台的背面的方向逸散而流动。由此,吹扫气体从载置台逸散而流动,因此,载置台的温度在面内一致,改善成膜处理的面内均匀性。面内均匀性。面内均匀性。
技术研发人员:
高木俊夫 川口拓哉 堀田隼史 山崎英亮 山内孝哉
受保护的技术使用者:
东京毅力科创株式会社
技术研发日:
2022.08.22
技术公布日:
2023/3/2