如何根据凸轮轴判定发动机工作顺序

阅读: 评论:0

如何根据凸轮轴判定发动机工作顺序[工程]
无级变速轮只有做功行程时,进气门和排气门都是关闭的,该缸气门凸轮处于基圆位置。
四缸机为1——3——4——2、
六缸机为1、5、3、6、2、4。
汽油机从分火头可以直观看出点火工作顺序。
ruan50582009-10-11 17:24:38
、气门间隙的检查和调整方法
在配气机构复装完成后或在维修发动机时,需要对气门间隙进行检查和调整。不同形式的发动机或不同的维修需求,所采用的方法也各不相同,现分类综述。
1、逐缸调整法
每一次调整操作仅针对某一缸的进排气门。经过多次调整,即可把整个发动机所有缸气门逐一调整完毕。
(1)并列双缸
并列双缸发动机曲轴布置方式有两种,即180°曲轴和360°。两种曲轴形式发动机做功间隔分别是18 0°和360°。
A:180°曲轴形式,如本田CB125T。
本田CB125T做功次序可表示为:
1→2→0→0→。
因此,第一缸做功后180°第二缸才做功。180°曲轴发动机的两缸上止点相差180°,即在飞轮或定子转子上相对分布,调整时分两步完成。
第一步,逆时针转动曲轴,使飞轮上“TL”标记与箱体上“1”刻线标记对齐(并确认第一缸处于压缩上止点位置);调整好第一缸进排气门。
第二步,继续逆时针转动曲轴180°,使飞轮上“TL”对面(180°角)的标记与箱体上“1”刻线对齐,调整好第二缸进排气门。
实时调试B:360°曲轴,如本田CM125。
本田CM125功序相位可表示为:
1 →
2 → 。
由此可见,第一缸做功360°后第二缸做功,两缸上止点标记重合为一个标记“T”。两次调整时第一步,逆时针转动曲轴,使飞轮“1T”标记与曲轴箱上“11”刻线对齐(并确认第一缸处于压缩上止点位置),调整好第一缸。第二步,继续逆时针转动曲轴360°使“1T”标记重新对正箱体上“11”刻线标记,并调整好第二缸。
(2)对置双缸
对置双缸发动机多为180°相位曲轴(如长江750等),两缸的功序相位可表示为1 → 2 → 。两缸的上止点也重合为一个标记,调整方法与(1)中B情况相同,在此略述。
(3)V型双缸
近来生产的V形缸发动机多选用360°相位曲轴,本文就360°曲轴予以说明。
雅马哈XV125/250,采用360°曲轴,两缸轴线夹角θ为60°。两缸功序相位可表示为1 → 2 →,即第一缸做功后360°+60°时,第二缸才做功。V形多缸发动机有两个上止点标记,两标记在飞轮或定时转子上位置很近,其夹角等于两缸轴线夹角。对于V形多缸来说,关键要弄清哪一个上止点标记对应哪一个缸或哪一列缸。图11表示雅马哈XV125/250发动机两缸上止点的位置关系。
在飞轮的旋转方向上,位于前方的“T”标记为第一缸的上止点标记T1(或者后列缸标记TR),位于后方的是第二缸上止点标记T2(或者前列缸标记TF)。
调整气门也分为两步:
第一步,逆时针转动曲轴,使“1T”标记与曲轴箱上标记“ ”指针对齐(并确认第一缸处于压缩上止点),调整好第一缸进排气门。
第二步,继续逆时针转动曲轴360°。此时“T1”标记再次对准箱体“ ”标记。然后再继续慢慢转动60°,使“T2”标记与箱体上“ ”指针对齐,此时可以调整好第二缸进排气门。
2、两次调整法
对于三缸以上的多缸发动机,如使用逐缸调整法需多次对正上止点标记。而两次调整法需要对正两次
标记,就可以把所有缸气门调整好。
川崎Z2-R400配气机构为D0HC4,凸轮轴直接驱动挺柱和气门。检查气门间隙时应把塞尺塞入凸轮和挺柱之间。测定两者之间的间隙,并与标准值对照。调整气门间隙,要用符合要求的新垫片来更换挺柱内旧垫片来完成。操作时,首先应拆卸曲轴箱右侧盖部件,然后即可分步实施。
第一步,顺时针转动曲轴,使定时转子上的T1、4标记对正箱体上的“1”刻线标记(并确认左侧第一缸处于压缩上止点位置),分别测定如下气门间隙并做好记录(1缸进排气门,2缸进气门,3缸排气门)。第二步,继续转动曲轴360°,使T1、4再次与箱体“1”刻线对齐,分别测定其他未测气门的间隙值并做好记录。
第三步,拆卸进排气凸轮轴,取下气门挺柱。分别测量各挺柱内旧垫片厚度值,并编号做好记录。然后依据公式计算出新垫片厚度值。
新垫片厚度值=测量顶柱间隙值+旧垫片厚度值-标准气门间隙值。
标准气门间隙值取值有一定范围,如川崎Z2-R400进排气门均为0.15-
0.24mm;铃木GSX-R250进气门为0.17-0.27mm,排气门为0.20-0.30mm。选取标准气门间隙值应以中间值为准,如川崎Z2-R400可取0.195mm。
第四步,依据各气门计算结果,选取合适的新垫片更换旧垫片。然后,重新装配好各凸轮轴。
第五步,对各气门间隙再复查一遍。
sesedy
从川崎Z2-R400气门调整过程中可以知道,经过两次即可把所有气门间隙检查调整完毕。其中关键问题是如何确定每一次可调气门。
确定每次可调气门的理论基础是每一汽缸的做功功序及其配气相位,简称功序相位理论。功序相位理论,因在前已有所述,本文简要说明功序相位理论的具体应用。功序相位理论,可以同配气凸轮轴上,同各凸轮的轴向和周向分布相对应。现以本田VF400F为例,说明用功序相位法如何确定可调气门。本田VF400F的功序相位可表示为
1 → 4 → 3 →
2 →
如果用功序相位图表示,则如图12所示。
图12中T1、3为基准上止点,如果使第1缸处于压缩上止点时,则T1和T3轴右侧各缸(本例中只有4缸)进气门均处于可调状态,T1和T3左侧各缸(本例中的第2缸)排气门均处于可调状态,而与第1缸对应的第3缸进排气门均处于不可调状态(此时T3处于排气上止点位置)。据此,如果把功序相位图简化为做功次序图则为:
1→4→3→2
发动机飞轮壳双进不排
这样,就可以把功序相位法简记为“双进不排法”,其中,“双”是指两种气门均可调,“进”指进气门可调,不是指两种气门均不可调,“排”是指排气门可调。“双进不排法”适用于现阶段各种多缸发动机,它是两次调整中确定和记忆可调气门的简便方法。第一次调整完成后,可将基准上止点再旋转360°,然后把其余未调气门调整好即可。
直列缸发动机如何应用该法确定第一次可调气门呢?以做功次序为1、5、3、6、2、4为例来说明。直列六缸发动机的基准上止点为T1、6,第一次可调气门可表示如下:
1→5→3→6→2→4
双进不排
对于奇数缸发动机,怎样确定可调气门呢?如假定有一五缸发动机,做功次序是1、5、3、2、4,则其功序相位图可表示为图13。
从图13可知,基准缸(第一缸)独自使用一个上止点T1,缺少一个和第一缸同时到达上止点的汽缸。
但是我们可以假定有一个空缸同第1缸共用一个上止点(其实该缸并不存在),此时记作0。则五缸发动机第一次可调气门表示如下:
1→5→3→0→2→4
双进排
对奇数汽缸发动机,采用两次调整法时,首先应将T1与箱体上标记对正,并确认第1缸处于压缩上止点位置,按照“双进不排法”确定可调气门并调整好。然后,将曲轴继续转动360°,使T1标记再次与箱体标记对正,把其余未调整气门按规定调整好。
3、任意调整法
任意调整法可以从两个方面去理解。一是不需要将上止点标记严格地对正箱体上标记。二是确定可调气门可根据需要随意选定,而不必要依照做功顺序和配气相位来选取可调气门。
任意调整法的关键问题,是如何判定该气门是否处于可调整状态。不同配气机构的发动机,可采用不同的判定方法。
(1)观察凸轮法
对于凸轮上置式发动机,可直接观察凸轮所处的空间位置(或者说所处的工作状态),来判定与之对应的气门是否可以调整。
①单个气门可调状态的认定
当发动机工作时,与凸轮紧邻接的驱动件(如气门摇臂、气门挺柱)的工作面与凸轮呈滑动性接触。当其触点进入凸轮基圆后,我们可以看作工作平面同基圆相切。此时我们把接触点称为切点,把挺柱等的工作面成为切面。
由配气相位可知,当凸轮轴正时针转动时,当凸轮转动到图14(a)所示位置,过凸轮尖端的中心轴线BE正好同气门挺柱的接触平面(在此称为切平面)平行。这时凸轮与挺柱的接触点(在此称为工作触点)已经进入了凸轮基圆弧段EDEA,即该气门已可靠地关闭。当凸轮继续转动180°到达图14(b)所示位置时,工作触点D还位于基圆弧段之中,即此时气门依然关闭着。
通过观察凸轮与挺柱的接触点D位置,即可判定与此对应的气门能否进行调整。操作时,可一边慢慢转动曲轴并仔细观察触点D的位置,只要D点位于凸轮基圆内(此时凸轮尖端应斜指向上方),停转曲轴,就可以对气门间隙进行检查和调整。
②同缸中两气门可调性的判定
根据气门的开闭规律和配气相位分析可知,同缸进排气门在整个配气周期中存在叠闭现象。当时排气门处于叠闭状态时,该缸两气门即可以同时调整或检查。
由图2可知,发生叠闭现象时,在凸轮轴圆周上对应着一个叠闭弧段EFA(EFA约为70°~150°)。所以,通过观察进排气凸轮同气门挺柱的工作触点位置,只要可靠地进入EFA弧段之中,同缸两气门即可以同时调整。
在操作时,可一边慢慢转动曲轴,一边仔细观察进气凸轮(或进气门)。当进气门由开启后并可靠关闭即接触点可靠地超过进气门始闭点E,再转动适当的角度后(应保证排气门未到达始开点A),即可对进排气门同时进行调整。
(2)观察气门法
对于凸轮轴下置式发动机,通过观察气门运动状态既能判定各缸工作顺序,还能判定气门能否进行调整。
对于单个气门来说,由于气门的关闭角很大(不小于360°),只要仔细察看该气门,当其可靠地完全关闭后,即可对该气门间隙进行检查和调整。
对于同缸中进排气门来说,其叠闭角也较大(约在150°以上),所以只要仔细观察进气门,当其可靠
地完全关闭后(也可再适当继续转动曲轴一定角度),即可对同缸中进排气门同时调整。在转动曲轴的时候,不仅要确保进气门完全关闭,还要确保排气门尚未打开,才可同时调整两种气门。
总之,任意调整法可以不用严格地对正上止点标记,即可方便地根据需要对任一气门进行检查和调整。利用配气正时标记将配气机构装配完成后,有时需要对正时装配的正确与否进行验证。验证时,应依据做气次序和配气相位,选定参照缸,并让参照缸处于压缩上止点。观察该缸凸轮的空间位置和指向,是否符合配气相位理论,是否符合各凸轮之间的空间位置关系。如果符合,则说明装配正确,否则说明装配有错误之处,应重新检查和装配。
mdeusdkse2009-10-12 20:55:21
共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径
欧洲可以说是柴油车的天堂,在德国柴油轿车占了39%。柴油轿车已有了近70年的历史,而最近10年可以说柴油发动机有了突飞猛进的发展。在1997年,博世与奔驰公司联合开发了共轨柴油喷射系统(Common Rail System)。今天在欧洲,众多品牌的轿车都配有共轨柴油发动机,如标致公司就有HDI共轨柴油发动机,菲亚特公司的JTD发动机,而德尔福则开发了Multec DCR柴油共轨系统。
共轨系统与之前以凸轮轴驱动的柴油喷射系统不同,共轨式柴油喷射系统将喷射压力的产生和喷
射过程彼此完全分开。电磁阀控制的喷油器替代了传统的机械式喷油器,燃油轨中的燃油压力由一个径向柱塞式高压泵产生,压力大小与发动机的转速无关,可在一定范围内自由设定。共轨中的燃油压力由一个电磁压力调节阀控制,根据发动机的工作需要进行连续压力调节。电控单元作用于喷油器电磁阀上的脉冲信号控制燃油的喷射过程。喷油量的大小取决于燃油轨中的油压和电磁阀开启时间的长短,及喷油嘴液体流动特性。
燃油喷射压力是柴油发动机的重要指标,因为它联系着发动机的动力、油耗、排放等。共轨柴油喷射系统已将燃油喷射压力提高到1800巴
最近2年,匹配直喷柴油发动机的轿车在欧洲得到了显著发展,有着高效和出的燃油经济性,并降低了发动机噪音。直喷柴油发动机使用的是泵喷嘴系统,国内生产的1.9TDI宝来就应用这一系统,最高喷射压力可达到1800巴。泵喷嘴直喷系统好虽好,但燃油压力不能保持恒定,随着排放控制的更加苛刻,就需要更高及恒定的柴油喷射压力和更完善的电子控制,于是众多制造商们就把优点更多的柴油共轨系统作为柴油发动机的发展方向。这一系统有很高的燃油压力,并能提供弹性燃油分配控制,通过ECU灵活地控制燃油分配、燃油喷射时间、喷射压力和喷射速率。通过对以上特性的控制,共轨已经使柴油机的响应性和驾驶舒适性达到了汽油发动机水平,同时它具有着显著的燃油经济性和低排
放特性。在发动机所有转速范围内保证高燃油压力,高的喷射压力可以在低转速工况下获得良好的燃烧特性
由凸轮轴驱动控制的轴向柱塞式分配泵的发动机,燃油系统压力与发动机转速呈线性关系,在发动机低转速时形成燃油压力不足,而共轨系统能够在发动机的所有转速范围内获得非常高的燃油压力。灵活的电子控制系统对正时和喷射压力的控制在发动机各种工况下都能够获得低排放和高效率。由于压力的形成与喷射过程分离,使发动机设计人员在研究燃烧和喷油过程时获得了更大的自由。可根据发动机工况的要求调节喷射压力和喷射正时,使发动机在低速工况下也能实现完全燃烧,所以既使是在很低的转速也能获得大扭矩。预喷射技术的应用在降低排放和噪音方面取得了更大的进步。
供油系统得到精确控制
低压油泵将柴油从油箱中吸出,经过过滤提供给高压油泵,在低压泵内有一电磁阀控制燃油到达高压泵室,燃油进入管形蓄压器—燃油轨道。在共轨上有压力传感器时时监测燃油压力,并将这一信号传递给ECU,通过对流量的调节控制共轨内的燃油压力达到希望值。喷射压力根据发动机运转条件的不同从200~1800巴,再通过电脑控制分别喷射到气缸中,共轨不但保持了燃油压力,还消除了压力波动。
燃油喷射是很复杂的机械、液压、电子系统联合做业,要适应发动机各种工况下的工作环境,在燃烧
之前燃油必须经过过滤和增压,在准确的时间以一定的喷射速率喷射到每一个气缸内。发动机电脑控制废气再循环、增压、排气后处理系统,以得到最佳的发动机特性和废气排放。
最小排量的共轨发动机和最新一代共轨发动机
夺刀器喷油器的紧凑结构使得共轨系统即使对小排量4气门发动机也是一个实用方案。在1999年年底诞生了装配着3缸共轨柴油发动机的Smart,它的排量只有799mL,最大功率30kW,在1800~280 0rpm时输出最大扭矩100Nm。
手动加油泵
在今年奔驰公司推出的E320上安装了第二代共轨发动机,最大功率150kW,1000rpm时输出扭矩250Nm,在1400rpm时即可得到峰值扭矩的85%,在1800~2600rpm的广阔区域内实现500Nm 的峰值扭矩。0~100km/h的加速时间只有7.7秒,最高车速243km/h。综合油耗是6.9L/100km,80 L的油箱使续航能力达到了1000km。而配有汽油机的E320的综合油耗是9.9L/100km。
柴油共轨系统已开发了3代,它有着强大的技术潜力
第一代共轨高压泵总是保持在最高压力,导致能量的浪费和很高的燃油温度。第二代可根据发动机需求而改变输出压力,并具有预喷射和后喷射功能。预喷射降低了发动机噪音:在主喷射之前百万
分之一秒内少量的燃油被喷进了气缸压燃,预加热燃烧室。预热后的气缸使主喷射后的压燃更加容易,
缸内的压力和温度不再是突然地增加,有利于降低燃烧噪音。在膨胀过程中进行后喷射,产生二次燃烧,将缸内温度增加200~250℃,降低了排气中的碳氢化合物。
由于其强大的技术潜力,今天各制造商已经把目光定在了共轨系统第3代——压电式(piezo)共轨系统,压电执行器代替了电磁阀,于是得到了更加精确的喷射控制。没有了回油管,在结构上更简单。压力从200~2000巴弹性调节。最小喷射量可控制在0.5mm3,减小了烟度和NOX的排放。
轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。
多缸柴油机的工作顺序
四冲程柴曲机每个工作循环中,只有燃烧膨胀冲程才作功,而进气、压缩和排气三个辅助冲程不但不作功,而且还消耗一部分功,用来压缩气体和克服进、排气时的阻力。因此,在柴油机运行时,由于各冲程中有的获得能量而有的消耗能量,造成转速不均匀,有时加速有
四冲程柴曲机每个工作循环中,只有燃烧膨胀冲程才
作功,而进气、压缩和排气三个辅助冲程不但不作功,而
且还消耗一部分功,用来压缩气体和克服进、排气时的阻
力。因此,在柴油机运行时,由于各冲程中有的获得能量
而有的消耗能量,造成转速不均匀,有时加速有时减速。
柴油机运转不均匀性,既达不到匀速运转的要求,又
使各运动零件在工作过程中到冲击,引起零件的严重磨损,
有时会造成损坏。因此,提高运转的均匀性是柴曲机结构
上的一十重要问题。
提高柴油机运转均匀性,通常采用两种方法:(1)在曲
轴上安装飞轮;(2)采用多缸结构型式。
飞轮是一个具有较大转动惯量的圆盘,安装在柴油机
的曲轴后端。当柴曲机在燃烧膨胀冲程中气体压力通过活
塞连杆推动曲轴时,也带动飞轮一起转动。此时飞轮将获
得的一部分能量“储存”起来。当柴油机运转到其它三个辅助冲程时,飞轮便放出所“储存”的能量,使曲轴仍然保持原有的转速,从而大大提高柴曲机运转的均匀性。
因此,单缸柴油机上必须安装一个尺寸与质量相当大的飞轮,以保证它的正常运转。
由于社会生产的发展,要求柴油机的功率增加,于是就出现了多缸柴油机。多缸柴油机具有两个和两个以上的气缸,各缸的活塞连杆机构都连接在同一根曲轴上。一般常用的多缸柴油机力4缸、6缸、8缸、12缸和16缸。根据气缸排列方法不同,又可分为直列式和V型等。
在多缸机中对每个气缸来讲,它是按照前述的单缸柴油机的工作过程进行工作的。但在同一时刻每缸所进行的工作过程却不相同。它们是根据气缸数目和曲柄排列方式的不同、按照一定的工作顺序而工作的。为了保证发动机运转均匀性和平衡性的要求,对四冲程柴油机,曲轴转动两转(即720º)内,每个气缸都必须完成一个循环。因此,各缸应相隔一定的转角而均匀的发火。若多缸柴油机有i个气缸,则发火间隔角应为:
θ=720/i
由上式可知:四缸机的发火间隔角为180。各缸的发火顺序可为:1-3-4-2,即表示第一缸发火以后,依次为第3、4、2缸的顺序相继发火。(责任编辑:cndeser)

本文发布于:2023-06-20 07:23:29,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/3/145671.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:发动机   气门   喷射   压力   燃油
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图