文献综述
一、课题国内外现状
微波滤波器在通信、信号处理、雷达等各种电路系统中具有广泛用途。随着移动通信、电子对抗和导航技术的飞速发展,对新的微波元器件的需求和现有器件性能的改善提出了更高的要求。发达国家都在利用新材料和新技术来提高器件性能和集成度,同时,尽可能地降低成本,减小器件尺寸和降低功耗。与国外相比,我国的微波滤波器的发展还有一定的差距。下面介绍一下滤波器的主要分类及其优缺点: 1、微带滤波器
微带滤波器主要包括平行耦合微带线滤波器、发夹型滤波器、微带类椭圆函数滤波器。 半波长平行耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器形式。其结构紧凑、第二寄生通带的中心频率位于主通带中心频率的3倍处、适应频率范围较大、适用于宽带滤波器时相对带宽可达20%。其缺点为插损较大,同时,谐振器在一个方向依次摆开,造成滤波器在一个方向上占用了较大空间。 和平行耦合线滤波器结构相比,发夹型滤波器具有紧凑的电路结构,减小了滤波器占用的空间,容易集成,并且降低了成本。在电路尺寸有较严格要求的场合发夹型滤波器得到了较为广泛的应用。
发夹型滤波器是由发夹型谐振器并排排列耦合而成,是半波长耦合微带滤波器的一种变形结构,是将半波长耦合谐振器折合成U字型构成的,因此与交指式、梳状线式等其他微波滤波器结构相比,其电路结构更加紧凑,具有体积小,微带线终端开路无需过孔接地,易于制造等优点。发夹型滤波器耦合拓扑结构属于交叉耦合,交叉耦合实质是从信号源到负载端有不止一条耦合路径,包括主耦合路径和相对较弱的辅耦合路径,任意两谐振器之间都可以产生耦合。相对于级联耦合,交叉耦合的最大优点是能够在通带附近的有限频率处产生传输零点,因而滤波器的带外抑制能力将获得极大提高,使用交叉耦合的谐振器滤波器比普通级联型的滤波器具有更好的频率选择性,同时可以减少所需谐振器的数目。
平行耦合线滤波器、交指型滤波器等,获得在带内较平坦的幅频特性,但带外抑制特性较差。微带类椭圆函数滤波器,通过在带外引入衰减极点,能明显改善滤波器的带外特性,比平行耦合线滤波器、交指型滤波器有更好的电特性。并且微带类椭圆函数滤波器具有较
小的体积,同时,在超导状态,由于导体薄膜的无载Q值很高,该种滤波器将在具有较高选择性的同时又具有较低的插损,具有很好的应用前景。
铜绿微囊藻
2、交指型滤波器
交指滤波器Q值较高、体积适中。在0.5~18GHz的频率范围内可实现5%~60%带通滤波,广泛应用于各种军、民用电子产品。交指滤波器一般由金属整体切割加工而成,结构牢固,性能稳定可靠。
交指型滤波器是对平行耦合微带线滤波器的一种改进,同样是减小微带滤波器占用的体积。具有以下优点:结构紧凑、可靠性高;由于每个谐振器间的间隔较大,故公差要求较低,容易制造;由于谐振杆长近似等于饱和聚酯,所以第二通带中心在3以上,其间不会有寄生响应。
由于交指滤波器既可以做成印刷电路形式,又可以做成腔体结构,用较粗的杆做成自行支撑,而不用介质。因此,交指滤波器在电子系统,尤其是在通信技术及近代航空航天领域中被广泛使用。
3、同轴滤波器
同轴腔滤波器广泛应用于通信、雷达等系统,按腔体结构不同一般分为标准同轴、方腔同轴等。同轴腔体具有Q值高、易于实现的特点,特别适用于通带窄、带内插损小、带外抑制高的场合。这类滤波器非常适合大规模生产,因此成本也非常低廉。但要在10 GHz以上使用时,由于其微小的物理尺寸,制作精度很难达到。具体的设计有方法负阻线子网络构造了多腔耦合的同轴带通滤波器电路模型;同轴腔体滤波器温度补偿法;阶跃阻抗谐振器等。
4、波导滤波器
路灯节电器波导型滤波器由于其Q值高,损耗小,功率容量大等优点而广泛应用于微波毫米波通信、卫星通信等系统中。近年来微波技术的快速发展对该类滤波器的尺寸、阻带特性等指标都提出了越来越高的要求。
通常可用直接耦合半波长谐振腔结构来构造波导型滤波器,但由于高次模的影响,这种类型的滤波器第二通带很近,频率高端阻带性能较差。采用1/4波长传输线耦合谐振膜片结构,
可对此进行改善。通过选择合适的膜片尺寸,使各谐振膜片谐振在同一频率上,但具有不同的Q值,可使其第二通带位置变远,从而显著提高其阻带特性。另外,1/4波长传输线耦合谐振膜片型(以下简称谐振膜片型)滤波器还具有尺寸小的优点,其总长度比直接耦合半波长谐振腔型(以下简称半波长型)缩短近40%。与半波长型相比较,谐振膜片型带通滤波器的尺寸缩短了38.4%,且具有更宽的阻带。波导带通滤波器还应用在各种微波多工器上,但其最大缺点是尺寸明显比其他可应用在微波段的谐振器大。
5、梳状线腔滤波器
梳状线滤波器标准响应为0.05dB波纹切比雪夫响应,具有体积小,Q值适中的特点。在0.5-12GHZ的频率范围内可实现0.5%-30%的相对带宽,广泛应用于各种军、民用电子产品。
为了减小尺寸,并且使设计简单,适合规模化生产,采用谐振线在高介电常数基片上直接制作一种微带滤波器,即梳状线腔滤波器。它利用交叉耦合方法提高通带边缘的陡度,同时在微带谐振器中应用了屏蔽线,减弱了由高介电常数带来的强耦合。但是,梳状线滤波器存在温度漂移的缺点。
微机消谐装置umg926、螺旋腔滤波器
目前采用的一些滤波器技术如压电晶体共振器,其同轴振荡器体积太大,不适合VHF卧式导热油加热器以及UHF频段的应用。在VHF,UHF频段,螺旋滤波器具有高Q值和较小的设计参数,可使设计的振荡器由一个的同轴谐振器装配而成。由于螺旋滤波器具有较强的耦合性能和高Q值,可承受高的功率容量,因此广泛应用在较低的射频大功率电路设计中。其缺点是螺旋耦合结构的边界条件很复杂,用电磁场数值方法进行计算的复杂度和计算量都非常大,因此实现设计比较困难。
7、小型集总参数滤波器
小型集总参数滤波器主要用于电子对抗、电子侦察、通信、雷达及其它电子设备中作预选、后选、杂波抑制以及变频滤波等。它具有体积小、重量轻、性能稳定可靠、加工方便、便于安装等优点。较其它滤波器具有更好的温度性能和带外抑制性能。小型集总参数滤波器等采用先进的专用微波CAD软件对滤波器电路进行优化选择。对10-2000MHz范围内的窄带及宽带滤波器均能实现。
8、陶瓷介质滤波器
多层陶瓷微波滤波器是经过电子陶瓷材料流延成型工艺,低温叠层烧结技术,高精度印刷叠层技术及封装技术等多种工艺流程而制成的高频多层陶瓷微波滤波器。它具有频率高、体积小、插损小、衰减大的特性,在移动通信、数字化家电等产品中得到广泛的应用。
多层陶瓷微波滤波器是通过在介质层上的印刷金属图案构成分布电容C和分布电感L,同时位于不同介质层上的金属图案层之间形成耦合电容而得到的。其实质是用带状线来实现滤波器的设计。叠层后,介质层上的印刷金属图案就相当于处于介质中的带状线,当设计不同长度和不同宽度的金属图案层时,就可以得到不同的L和C。因此,通过设计金属图案层的形状和选用适当的介质时,就可得到在某一特定频率发生谐振,同时满足带内插损、带宽和阻带等各项指标要求的滤波器。