背场 组装打火机增加背电场是提高电池效率的有效途径。如在p型材料的电池中,背面增加一层p+浓掺杂层,形成p+-p的结构,那么在p+-p的界面就产生了一个由p区指向p+的内建电场。假设p+区杂质强电离,那么这个内建电场的电压为 ,式中NA+和NA分别为p+区和p区的电离杂质浓度。由于这个内建电场所分离出的光生载流子的积累,形成一个以p+端为正,p端为负的光生电压,这个光生电压与电池结构本身的pn结两端的光生电压极性相同,从而提高了开路电压橡胶护套 Voc。另外,由于背电场的存在,使光生载流子受到加速,这也可以看作是增加了载流子的有效扩散长度,因而增加了这部分少子的收集几率,短路电流Jsc服务器硬件监控 也就得到提高。另外,背电场的存在迫使少数载流子远离表面,复合率降低,使暗电流减少。无焰泄爆装置 制作背面场的方法较多,如蒸铝烧结、浓硼或浓磷扩散等。其中,在电池背面采用定域扩散制背场具有较好的优越性,既产生了内建电场,同时又减少了电极与基体接触面积,使金属与半导体界面的高复合速率区域大大减少。并且相对于背面全扩散浓掺杂结构,定域掺杂由于大大减少了浓掺杂面积(一般只占全背面积的1~2%),所以也大大降低了背面的表面复合,因而更好地提高了太阳电池的性能。 |
|
|
1,改良西门子法——闭环式三氯氢硅氢还原法改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。国内外现有的多晶硅厂绝大部分采用此法生产电子级与太阳能级多晶硅。2,硅烷法——硅烷热分解法硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。但美国Asimi和彩铅芯
SGS公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。3,流化床法以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低, 适用于大规模生产太阳能级多晶硅。唯一的缺点是安全性差,危险性大。其次是产品纯度
不高,但基本能满足太阳能电池生产的使用。
此法是美国联合碳化合物公司早年研究的工艺技术。目前世界上只有美国MEMC公司采用此法生产粒状多晶硅。此法比较适合生产价廉的太阳能级多晶硅。
4,太阳能级多晶硅新工艺技术
除了上述改良西门子法、硅烷热分解法、流化床反应炉法三种方法生产电子级与太阳能级多晶硅以外,还涌现出几种专门生产太阳能级多晶硅新工艺技术。
1)冶金法生产太阳能级多晶硅
据资料报导[1]日本川崎制铁公司采用冶金法制得的多晶硅已在世界上最大的太阳能电池厂(SHARP公司)应用,现已形成800吨/年的生产能力,全量供给SHARP公司。
主要工艺是:选择纯度较好的工业硅(即冶金硅)进行水平区熔单向凝固成硅锭,去除硅锭中金属杂质聚集的部分和外表部分后,进行粗粉碎与清洗,在等离子体融解炉中去除硼杂质,再进行第二次水平区熔单向凝固成硅锭,去除第二次区熔硅锭中金属杂质聚集的部分和外表部分,经粗粉碎与清洗后,在电子束融解炉中去除磷和碳杂质,直接生成太阳能级多晶硅。
2)气液沉积法生产粒状太阳能级多晶硅
据资料报导[1]以日本Tokuyama公司为代表,目前10吨试验线在运行,200吨半商业化规模生产线在2005-2006年间投入试运行。
主要工艺是:将反应器中的石墨管的温度升高到1500℃,流体
三氯氢硅和氢气从石墨管的上部注入,在石墨管内壁1500℃高温处反应生成液体状硅,然后滴入底部,温度回升变成固体粒状的太阳能级多晶硅。
3)重掺硅废料提纯法生产太阳能级多晶硅
据美国Crystal Systems资料报导[1],美国通过对重掺单晶硅生产过程中产生的硅废料提纯后,可以用作太阳能电池生产用的多晶硅,最终成本价可望控制在20美元/Kg以下。
三元醇