1.本发明涉及一种基于改进交叉遗传算法的
阵列天线旁瓣优化方法,属于计算机科学技术与应用领域。
背景技术:
2.现代天线设计中,往往对天线有指向性好,旁瓣
电平低,天线增益高的指标,单根天线会出现无法满足上述要求的问题。进入5g时代,从均匀阵列中除去一些阵元,同时,使阵元在阵列中随机分布形成稀布阵列天线,这就需要减少阵元个数与降低成本,实现与满阵相同的效果同时兼顾了资源的合理利用。
3.阵列天线优化是应用于现代天线设计中的研究热点,但一些传统优化方法只能达到降低旁瓣的效果,而不具备收敛速度快,搜索精度高,计算复杂度低的特点。
技术实现要素:
4.为解决上述问题,本发明提出一种基于改进交叉遗传算法的阵列天线旁瓣优化方法,天线阵列的排布选择
圆形阵列并使用改进交叉的遗传算法对其进行优化,同时,增加了阵列半径大小固定、放置阵元总数不变的约束条件。当采用改进交叉的遗传算法时,增加了对初始种的测量过程和根据对比设定值选择两种不同交叉方式以减小重复率的方法,通过迭代寻优出稀布圆形阵列的最优半径,嵌入函数模型后可以有效降低峰值旁瓣电平。本发明具有不易陷入局部最优、搜索精度高、收敛速度快等特点,在5g通信技术及雷达抗干扰系统中有广泛的应用前景。
5.本发明为解决上述技术问题采用以下技术方案:
6.一种基于改进交叉遗传算法的阵列天线旁瓣优化方法,所述阵列天线为圆形阵列天线,所述圆形阵列天线采用改进交叉的遗传算法对其峰值旁瓣电平进行优化,具体步骤如下:
7.步骤1,构建描述圆形阵列天线的初始种;
8.步骤2,基于初始种进行第一次迭代,并对第一次迭代结果进行一次测量;
9.步骤3,将步骤2得到的测量结果中不满足设定收敛要求的个体替换为满足设定收敛要求的经验值;
10.步骤4,对步骤3得到的种进行选择、交叉和变异操作;
11.步骤5,重复执行步骤2-4,进行圆环层数寻优,得到最优圆环层数;
12.步骤6,保持步骤5得到的最优圆环层数,重复执行步骤2-4,输出最优峰值旁瓣电平和圆形阵列的最优半径。
13.进一步地,未对内部圆环层数寻优前,保持最外层圆环大小不变。
14.进一步地,所述圆形阵列天线的圆心固定放置一个天线单元。
15.进一步地,所述圆形阵列天线的天线单元总数固定。
16.进一步地,所述步骤4中,进行交叉操作前,先计算当前种与前一次迭代结果的
个体相关性,若个体相关性均大于设定阈值,则以对半概率进行交叉操作,否则在基因片段差异超过设定差异值的个体中进行交叉。
17.进一步地,所述改进交叉的遗传算法的适应度函数为:
[0018][0019][0020]
其中msll为适应度函数,f(φ)为方向图函数,f
db
(φ)表示归一化后的方向图的函数,φ是以 x轴正方向为参考方向的方位角,s表示方向图的旁瓣区间,λ为波长,r为圆形阵列的半径, di表示第i个天线单元的方位角,(φ0,θ0)表示圆形阵列主波束指向方向。
[0021]
进一步地,所述交叉概率为0.8,变异概率为0.05。
[0022]
进一步地,所述圆形阵列中每一层级圆环半径大于0且小于等于4.7。
[0023]
进一步地,所述优化方法选取的目标函数与所述改进交叉的遗传算法的适应度函数相同。
[0024]
本发明采用以上技术方案与现有技术相比,具有以下技术效果:本发明能够在传统遗传算法基础上进一步改进,测量第一代初始化种并选取较好解替换,同时,在遗传算法的交叉过程增加预处理。当采用改进交叉的遗传算法时,通过迭代得到最优峰值旁瓣电平和稀布圆形阵列的最优半径,与传统方法相比可以有效降低峰值旁瓣电平。该算法不易陷入局部最优、搜索精度高、收敛速度快等特点,在5g通信技术及雷达抗干扰系统中有广泛的应用前景。
附图说明
[0025]
图1是本发明未对层数优化时,圆形阵列的阵元排布方式;
[0026]
图2是本发明未对层数优化时,圆形阵列采用matlab软件计算的迭代速度曲线;
[0027]
图3是本发明未对层数优化时,圆形阵列采用matlab软件计算的天线辐射方向图;
[0028]
图4是本发明未对层数优化时,圆形阵列的三维立体方向图;
[0029]
图5是本发明一实施例中,圆形阵列的阵元排布方式;
[0030]
图6是本发明一实施例中,圆形阵列采用matlab软件计算的迭代速度曲线;
[0031]
图7是本发明一实施例中,圆形阵列采用matlab软件计算的天线辐射方向图;
[0032]
图8是本发明一实施例中,圆形阵列采用遗传算法优化的三维立体方向图;
[0033]
图9是本发明另一实施例中,圆形阵列的阵元排布方式;
[0034]
图10是本发明另一实施例中,圆形阵列采用matlab软件计算的迭代速度曲线;
[0035]
图11是本发明另一实施例中,圆形阵列采用matlab软件计算的天线辐射方向图;
[0036]
图12是本发明另一实施例中,圆形阵列采用改进交叉遗传算法优化的三维立体方向图;
[0037]
图13是本发明的方法流程图。
具体实施方式
[0038]
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
[0039]
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
[0040]
下面结合附图对本发明的技术方案做进一步的详细说明:
[0041]
本发明提出一种基于改进交叉遗传算法的阵列天线旁瓣优化方法,为了实现低旁瓣的优化目标,天线阵列的排布选择圆形阵列并使用改进的遗传算法对其进行优化,同时,增加了阵列半径大小固定、放置阵元总数不变的约束。当采用改进交叉的遗传算法时,通过迭代寻优出稀布圆形阵列的最优半径,嵌入函数模型后可以有效降低峰值旁瓣电平。本发明具有不易陷入局部最优、搜索精度高、收敛速度快等特点,有利于平面阵列天线设计和5g移动通信应用。
[0042]
本发明的一种基于改进交叉遗传算法的阵列天线旁瓣优化方法,所述阵列天线包括由天线单元组成的圆阵结构;圆形阵列中的天线单元逐层放置。该优化方法先对圆面内层数取最优后,再由改进交叉的遗传算法优化圆面内每一层阵元个数与相邻层级之间的间隔,是全向天线单元组成的圆形阵列结构;天线阵元在圆面内逐层放置,圆心阵元固定放置,同一层级上的相邻阵元之间的间隔相同,不同层级之间的间隔不同,最外层阵列半径固定。如图13所示,采用改进交叉的遗传算法对峰值旁瓣电平进行优化,具体步骤如下:
[0043]
步骤1,构建描述圆形阵列天线的初始种;
[0044]
步骤2,基于初始种进行第一次迭代,并对第一次迭代结果进行一次测量;
[0045]
步骤3,将步骤2得到的测量结果中不满足设定收敛要求的个体替换为满足设定收敛要求的经验值;
[0046]
步骤4,对步骤3得到的种进行选择、交叉和变异操作;
[0047]
步骤5,对种进行内部圆环层数的寻优,重复执行步骤2-4操作,得到最优圆环数;
[0048]
步骤6,保持步骤5得到的最优圆环数,重复执行步骤2-4操作优化种,迭代输出峰值旁瓣电平最优值和圆形阵列的最优半径。
[0049]
其中,未对圆环层数寻优前保持最外层圆环大小不变。具体调用函数为population_init。
[0050]
其中,所述优化方法改进了遗传算法的交叉过程,对第二代之后的种进行交叉前,为了减小重复概率,先给出一个设定值,与前一代个体结果进行对比,若大于该值则对半概率进行交叉操作,若小于等于设定值则在基因片段差异较大的个体中进行筛选交叉,该方法加快了算法收敛速度,提高了稳定性。
[0051]
其中,所述优化方法选取适应度函数为峰值旁瓣电平,具体函数如下:
[0052]
[0053][0054]
其中f(φ)为方向图函数,λ为波长,r为圆形阵列半径,φ是以x轴正方向为参考方向的方位角,di表示第i个阵元的方位角,主波束指向方向为(φ0,θ0),msll为适应度函数,f
db
(φ) 表示归一化后的方向图的函数,s表示方向图的旁瓣区间。
[0055]
其中,所述优化方法选取的目标函数与适应度函数相同。
[0056]
在一个实施例中,如图1所示,在未对层数优化时,阵列天线由120个阵元在平面中组成圆形阵列。整个圆形阵列共4层阵元组成,第1层圆心处固定放置一个阵元,其余3层逐级分布,相邻圆环之间距离进行稀布。每个阵元均为理想全向天线单元。计算得到未优化圆形阵列的峰值旁瓣电平,但是仿真计算的复杂度较高,速度较慢,容易陷入局部解。
[0057]
本实施例中未对圆形阵列进行优化,圆形阵列最大半径为4.7,以圆心为基准,圆面上4 层圆环到圆心的距离分别为0,1.9896,2.9487,4.7000;每层上阵元个数分别为1,25,31, 63;利用matlab软件仿真计算得到的阵列天线各项特性。
[0058]
图2是采用matlab软件计算的阵列天线旁瓣电平适应度函数的迭代速度曲线,设置最大迭代次数为200,种大小为50,可以看出通过迭代后得到的峰值旁瓣电平为-16.3092db。
[0059]
图3是采用matlab软件计算的圆形阵列天线的辐射方向图,横轴表示归一化后天线单元相位,纵轴表示旁瓣电平。选取目标函数与适应度函数相同,相位范围在-180
°
与180
°
之间,旁瓣电平范围在0与-40db之间。可以看出峰值旁瓣电平与迭代后得到的值大小相同为-16.3092db。
[0060]
图4是圆形阵列天线的三维辐射方向图。
[0061]
在一个实施例中,如图5所示,优化的阵列天线由120个阵元在平面中组成圆形阵列。整个圆形阵列共7层阵元组成,第1层圆心处固定放置一个阵元,其余6层逐级分布,相邻圆环之间距离进行稀布。每个阵元均为理想全向天线单元。采用一般的遗传算法对该圆形阵列进行优化,可以降低峰值旁瓣电平,但是仿真计算的复杂度较高,速度较慢,需要针对性的进一步作出改进。
[0062]
本实施例中采用遗传算法对整个圆形阵列每个圆环上阵元个数及不同层级距离进行优化,圆形阵列最大半径为4.7,以圆心为基准,圆面上7层圆环到圆心的距离分别为0,0.5803, 1.1377,2.0203,2.9215,3.7532,4.7000;每层上阵元个数分别为1,7,14,25,31,31, 11;利用matlab软件仿真计算得到的阵列天线各项特性。
[0063]
图6是采用matlab软件计算的阵列天线旁瓣电平优化方法适应度函数的迭代速度曲线,该优化算法设置最大迭代次数为200,种大小为50,可以看出该优化方法在135代附近趋于稳定,通过迭代后得到的最优峰值旁瓣电平为-23.6739db。
[0064]
图7是采用matlab软件计算的优化后圆形阵列天线的辐射方向图,实线表示方位角φ=0
°
时的方位向方向图;虚线表示方位角φ=90
°
时的俯仰向方向图;横轴表示归一化后天线单元相位,纵轴表示旁瓣电平。选取目标函数与适应度函数相同,相位范围在-180
°
与180
°
之间,旁瓣电平范围在0与-40db之间。可以看出经优化后峰值旁瓣电平与迭代得到的最优值大小相同为-23.6739db。
[0065]
图8是优化后圆形阵列天线的三维辐射方向图。
[0066]
在一个实施例中,如图9所示,,优化的阵列天线由120个阵元在平面中组成圆形阵列。整个圆形阵列共7层阵元组成,第1层圆心处固定放置一个阵元,其余6层逐级分布,相邻圆环之间距离进行稀布。每个阵元均为理想全向天线单元。采用改进种初始化及改进交叉的遗传算法对该圆形阵列进行优化,不仅可以进一步降低峰值旁瓣电平,而且加快了收敛速度,降低了仿真计算的复杂度,仿真过程也不易陷入局部最优解。
[0067]
本实施例中采用改进种初始化过程和改进交叉的遗传算法对整个圆形阵列每个圆环上阵元个数及不同层级距离进行优化,圆形阵列最大半径为4.7,以圆心为基准,圆面上7层圆环到圆心的距离分别为0,0.6398,1.3636,2.1027,2.9634,3.7954,4.7000;每层上阵元个数分别为1,8,17,25,29,29,11;利用matlab软件仿真计算得到的阵列天线各项特性。
[0068]
图10是采用matlab软件计算的阵列天线旁瓣电平优化方法适应度函数的迭代速度曲线,该优化算法设置最大迭代次数为200,种大小为50,可以看出该优化方法通过迭代后得到的最优峰值旁瓣电平为-25.1338db,与传统方法相比在100代附近趋于稳定,收敛速度较快。
[0069]
图11是采用matlab软件计算的优化后圆形阵列天线的辐射方向图,实线表示方位角φ=0
°
时的方位向方向图;虚线表示方位角φ=90
°
时的俯仰向方向图;横轴表示归一化后天线单元相位,纵轴表示旁瓣电平。选取目标函数与适应度函数相同,相位范围在-180
°
与180
°
之间,旁瓣电平范围在0与-40db之间。可以看出经优化后峰值旁瓣电平与迭代得到的最优值大小相同为-25.1338db,与传统方法相比优化了1.4599db。
[0070]
图12是改进交叉的遗传算法优化后圆形阵列天线的三维辐射方向图。
[0071]
综上所述,本发明公开了一种基于改进交叉遗传算法的阵列天线旁瓣优化方法,属于计算机技术与应用领域。为了实现低旁瓣的优化目标,天线阵列的排布选择圆形阵列并使用改进的遗传算法对其进行优化,同时,增加了阵列孔径、阵元个数、阵元孔径的约束。当采用改进交叉的遗传算法时,通过迭代寻优出稀布圆形阵列的最优半径,嵌入函数模型后可以有效降低峰值旁瓣电平。本发明具有不易陷入局部最优、搜索精度高、收敛速度快等特点,在 5g通信技术及雷达抗干扰系统中有广泛的应用前景。
[0072]
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
[0073]
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。
技术特征:
1.一种基于改进交叉遗传算法的阵列天线旁瓣优化方法,所述阵列天线为圆形阵列天线,其特征在于,所述圆形阵列天线采用改进交叉的遗传算法对其峰值旁瓣电平进行优化,具体步骤如下:步骤1,构建描述圆形阵列天线的初始种;步骤2,基于初始种进行第一次迭代,并对第一次迭代结果进行一次测量;步骤3,将步骤2得到的测量结果中不满足设定收敛要求的个体替换为满足设定收敛要求的经验值;步骤4,对步骤3得到的种进行选择、交叉和变异操作;步骤5,重复执行步骤2-4,进行圆环层数寻优,得到最优圆环层数;步骤6,保持步骤5得到的最优圆环层数,重复执行步骤2-4,输出最优峰值旁瓣电平和圆形阵列的最优半径。2.根据权利要求1所述的一种改进交叉的阵列天线旁瓣优化方法,其特征在于,未对内部圆环层数寻优前,保持最外层圆环大小不变。3.根据权利要求1所述的一种改进交叉的阵列天线旁瓣优化方法,其特征在于,所述圆形阵列天线的圆心固定放置一个天线单元。4.根据权利要求1所述的一种改进交叉的阵列天线旁瓣优化方法,其特征在于,所述圆形阵列天线的天线单元总数固定。5.根据权利要求1所述的一种改进交叉的阵列天线旁瓣优化方法,其特征在于,所述步骤4中,进行交叉操作前,先计算当前种与前一次迭代结果的个体相关性,若个体相关性均大于设定阈值,则以对半概率进行交叉操作,否则在基因片段差异超过设定差异值的个体中进行交叉。6.根据权利要求1所述的一种改进交叉的阵列天线旁瓣优化方法,其特征在于,所述改进交叉的遗传算法的适应度函数为:进交叉的遗传算法的适应度函数为:其中msll为适应度函数,f(φ)为方向图函数,f
db
(φ)表示归一化后的方向图的函数,φ是以x轴正方向为参考方向的方位角,s表示方向图的旁瓣区间,λ为波长,r为圆形阵列的半径,d
i
表示第i个天线单元的方位角,(φ0,θ0)表示圆形阵列主波束指向方向。7.根据权利要求1所述的一种改进交叉的阵列天线旁瓣优化方法,其特征在于,所述交叉概率为0.8,变异概率为0.05。8.根据权利要求1所述的一种改进交叉的阵列天线旁瓣优化方法,其特征在于,所述圆形阵列中每一层级圆环半径大于0且小于等于4.7。9.根据权利要求1所述的一种改进交叉的阵列天线旁瓣优化方法,其特征在于,所述优化方法选取的目标函数与所述改进交叉的遗传算法的适应度函数相同。
技术总结
本发明公开了一种基于改进交叉遗传算法的阵列天线旁瓣优化方法,属于计算机技术与应用领域。为了实现低旁瓣的优化目标,天线阵列的排布选择圆形阵列并使用改进的遗传算法对其进行优化,同时,增加了阵列半径大小固定、放置阵元总数不变的约束。当采用改进交叉的遗传算法时,增加了对初始种的测量过程和根据对比设定值选择两种不同交叉方式以减小重复率的方法,通过迭代得到最优峰值旁瓣电平和稀布圆形阵列的最优半径,与传统方法相比可以有效降低峰值旁瓣电平。本发明具有不易陷入局部最优、搜索精度高、收敛速度快等特点,在5G通信技术及雷达抗干扰系统中有广泛的应用前景。术及雷达抗干扰系统中有广泛的应用前景。术及雷达抗干扰系统中有广泛的应用前景。
技术研发人员:
张华美 姜文琦
受保护的技术使用者:
南京邮电大学
技术研发日:
2022.08.04
技术公布日:
2022/12/22