基于buck-boost
变换器与开关
电容的
锂电池环形
均衡器技术领域
1.本发明涉及一种基于buck-boost变换器与开关电容的锂电池环形均衡器,属于电力电子变换器领域。
背景技术:
2.锂离子电池具有可靠性高、能量密度大、自放电率低等优点。近年来,作为新兴绿能源的锂电池也广泛应用到航空、航天、智能微电网储能系统、电动汽车动力电池等领域,为了获得足够高的电压与容量,需要将锂电池单元串联形成电池包使用。由于各电池单元的初始容量差异、衰减特性不对称、温度分布不均匀的等现象,电池的化学和电学特性方面具有不可避免的差异而导致充放电不均衡。如继续串联使用,则会长期工作在不均衡状态时,会严重降低电池的有效容量,减少其使用寿命,甚至电池过热会引起爆炸等安全事故。因此锂电池包需配备均衡器。
3.目前,锂电池均衡器主要分为主动均衡器与被动均衡器,被动均衡也叫能耗式均衡,是将锂电池单元中多余的能量以热能的形式耗散。存在能量浪费、热管理困难等问题,因此主动均衡器应用更加广泛。主动均衡器也叫非能耗式均衡,通过开关管主动的实现电池单元间的能量与电压的均衡,主动均衡器按能量均衡传输方式可分为:电容型均衡电路、电感型均衡电路、变压器型均衡电路。其中buck-boost均衡器仅可实现相邻电池间的能量转移,当锂电池组规模较大时,首尾电池单元的能量传输距离较远会导致均衡速度慢,均衡效率低。因此为解决首尾电池能量传输路经长,传输效率低的缺点,本方案由此产生。
技术实现要素:
4.发明目的:针对传统双向buck-boost均衡器效率低、均衡速度慢的缺点,本发明提出一种基于buck-boost变换器与开关电容的锂电池环形均衡器。
5.技术方案:一种基于buck-boost变换器与开关电容的锂电池环形均衡器,其特征在于,包含n-1个buck-boost变换器均衡模块,1个开关电容均衡模块,被均衡的锂电池包含有n个锂电池单元(b1、b2、b3、
……
、bn),第i(i=1,2
……
,(n-1))节锂电池单元的正极与第(i+1)节锂电池单元的负极相连,第1节锂电池单元的负极作为整个电池组的负极,第n节锂电池单元的正极作为整个电池组的正极。
6.每个buck-boost变换器均衡模块由两个开关管和一个电感组成,第i(i=1、2、
…
、(n-1)个buck-boost变换器均衡模块中的开关管s
2i-1
的漏极与开关管s
2i
的源极共同连接到电感li的第一端,开关管s
2i
的漏极与锂电池单元b
i+1
的正极相连接,电感li的第二端与锂电池单元b
i+1
的负极、锂电池单元bi的正极相连接,开关管s
2i-1
的源极与锂电池单元bi的负极相连接。
7.开关电容均衡模块由四个开关管和一个电容组成,开关管q1的漏极与开关管q2的源极共同连接到电容的第一端,开关管q1的源极与锂电池单元b1的负极相连接,锂电池单元b
n-1
的正极与bn的负极共同连接到开关管q2的漏极,开关管q3的漏极与开关管q4的源极共同
连接到电容的第二端,锂电池单元b1的正极与b2的负极共同连接到开关管q3的源极,开关管q4的漏极与锂电池单元bn的正极相连接。
8.基于buck-boost变换器及开关电容的锂电池环形均衡器,其特征在于,相邻电池间采用buck-boost变换器均衡模块实现均衡,首尾电池间采用开关电容均衡模块实现均衡,有效减少锂电池组平均均衡路径,提高了均衡速度,提高了均衡效率。
9.有益效果:本发明所提一种基于buck-boost变换器与开关电容的锂电池环形均衡器实施以后,首尾电池间采用开关电容均衡模块实现均衡,有效降低首尾电池间的能量传输距离,提高了均衡器效率;采用开关电容模块具有成本低、效率高的优点;以上两个有益效果可大大提升本发明所提电池均衡器的市场竞争力。
附图说明
10.图1为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器主电路拓扑;
11.图2为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中buck-boost变换器均衡模块的运行波形;
12.图3为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中buck-boost变换器均衡模块的运行模态1;
13.图4为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中buck-boost变换器均衡模块的运行模态2;
14.图5为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中buck-boost变换器均衡模块的运行模态3;
15.图6为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中buck-boost变换器均衡模块的运行模态4;
16.图7为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中开关电容均衡模块的运行波形;
17.图8为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中开关电容均衡模块的运行模态1;
18.图9为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中开关电容均衡模块的运行模态2;
19.图10为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中开关电容均衡模块的运行模态3;
20.图11为本发明所公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中开关电容均衡模块的运行模态4;
21.图中符号名称:b
1-bn—电池组中的n个锂电池单元;s
1-s
2(n-1)
—buck-boost变换器均衡模块的第1开关管-第2(n-1)开关管;l
1-l
n-1
—buck-boost变换器均衡模块的第1电感-第n-1电感;q
1-q4—开关电容均衡模块的第1开关管-第4开关管;c—开关电容均衡模块的电容;u
s2i-1
,u
s2i
—第2i-1开关管-第2i开关管的驱动信号;i
li
—第i电感的电流;u
q1-u
q4
—开关电容均衡模块的第1开关管-第4开关管的驱动信号;ic—电容电流。
具体实施方式
22.下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本技术所附权利要求所限定的范围。
23.一种基于buck-boost变换器与开关电容的锂电池环形均衡器,其特征在于,包含n-1个buck-boost变换器均衡模块,1个开关电容均衡模块,被均衡的锂电池包含有n个锂电池单元(b1、b2、b3、
……
、bn),第i(i=1,2
……
,(n-1))节锂电池单元的正极与第(i+1)节锂电池单元的负极相连接,第1节锂电池单元的负极作为整个电池组的负极,第n节锂电池单元的正极作为整个电池组的正极。
24.每个buck-boost变换器均衡模块由两个开关管和一个电感组成,第i(i=1、2、
…
、(n-1)个buck-boost变换器均衡模块中的开关管s
2i-1
的漏极与开关管s
2i
的源极共同连接到电感li的第一端,开关管s
2i
的漏极与锂电池单元b
i+1
的正极相连接,电感li的第二端与锂电池单元b
i+1
的负极、锂电池单元bi的正极相连接,开关管s
2i-1
的源极与锂电池单元bi的负极相连接。
25.开关电容均衡模块由四个开关管和一个电容组成,开关管q1的漏极与开关管q2的源极共同连接到电容的第一端,开关管q1的源极与锂电池单元b1的负极相连接,锂电池单元b
n-1
的正极与bn的负极共同连接到开关管q2的漏极,开关管q3的漏极与开关管q4的源极共同连接到电容的第二端,锂电池单元b1的正极与b2的负极共同连接到开关管q3的源极,开关管q4的漏极与锂电池单元bn的正极相连接。
26.图1所示的本发明公开的一种基于buck-boost变换器与开关电容的锂电池环形均衡器中,当电池单元之间出现不一致时,buck-boost变换器均衡模块与开关电容均衡模块会通过控制相应开关管来实现电池单元之间能量的转移,其中buck-boost变换器均衡模块在均衡时开关管s
1-s
2(n-1)
的驱动信号为u
s1-u
s2(n-1)
,以第i个buck-boost变换器均衡电路模块为例,其开关管s
2i-1-s
2i
的驱动信号为u
s2i-1-u
s2i
,波形图如图2所示。当电池单元之间的buck-boost变换器均衡模块运行到稳态时,第i个buck-boost变换器均衡模块的电感电流i
li
波形如图2所示。在一个开关周期内,第i个buck-boost变换器均衡模块运行可分为4个模态分别对应图3至图6,由于模态2与模态4运行一致,因此模态2与模态4对应的图3与图6的运行情况一致,即图3与图6电流流通路径相同。其中开关电容均衡模块在均衡时开关管q
1-q4的驱动信号为u
q1-u
q4
,波形图如图7所示。当锂电池单元之间的开关电容均衡模块运行到稳态时,开关电容均衡模块的电容电流ic波形如图7所示,一个开关周期内,开关电容均衡模块运行可分为4个模态分别对应图8至图11,由于模态2与模态4运行一致,因此模态2与模态4对应的图9与图11的运行情况一致。
27.buck-boost均衡模态1[图3]:t0时刻,开关管s
2i-1
导通,开关管s
2i
关断,电感li、开关管s
2i-1
、电池单元bi构成回路。此阶段中,电池单元bi中的能量通过回路给电感li充电,电感电流开始上升,直至t1时刻开关管s
2i-1
关断为止。
[0028]
buck-boost均衡模态2[图4]:t1时刻,开关管s
2i-1
关断,开关管s
2i
关断,电感li、开关管s
2i
的体二极管、电池单元b
i+1
构成回路。此阶段中,电感li中的能量通过回路给电池单元b
i+1
充电,直至t2时刻开关管s
2i
开通为止。
[0029]
buck-boost均衡模态3[图5]:t2时刻,开关管s
2i-1
关断,开关管s
2i
开通,电感li、开
关管s
2i
、电池单元b
i+1
构成回路。此阶段中,电感li中的能量通过回路给电池单元b
i+1
充电,直至t3时刻开关管s
2i
关断为止。
[0030]
buck-boost均衡模态4[图6]:t3时刻,开关管s
2i-1
关断,开关管s
2i
关断,电感li、开关管s
2i
的体二极管、电池单元b
i+1
构成回路。此阶段中,电感li中的能量通过回路给电池单元b
i+1
充电,直至t4时刻开关管s
2i-1
开通为止。该模态与模态2状态相同。
[0031]
t4时刻以后,电路开始重复上一周期的工作过程,其各量均与前4个模态对称,对应模态图分别对应图3-图6,这里不再赘述。
[0032]
开关电容均衡模态1[图8]:t0时刻,开关管q2、q4同时导通,开关管q1、q3同时关断,电容c、开关管q2、q4、电池单元bn构成回路。此阶段中,电池单元bn中的能量通过回路给电容c充电,直至t1时刻开关管q2、q4同时关断为止。
[0033]
开关电容均衡模态2[图9]:t1时刻,开关管q2、q4同时关断,开关管q1、q3同时关断,此时没有能量通路,直至t2时刻开关管q1、q3同时开通为止。
[0034]
开关电容均衡模态3[图10]:t2时刻,开关管q1、q3同时开通,开关管q2、q4同时关断,电容c、开关管q1、q3、电池单元b1构成回路。此阶段中,电容c中的能量通过回路给电池单元b1充电,直至t3时刻开关管q1、q3同时关断为止。
[0035]
开关电容均衡模态4[图11]:t3时刻,开关管q1、q3同时关断,此时没有能量通路,直至t4时刻开关管q2、q4同时开通为止。
[0036]
t4时刻以后,电路开始重复上一周期的工作过程,其各量均与前4个模态对称,对应模态图分别对应图8-图11,这里不再赘述。
[0037]
综上所述,本发明公开的基于buck-boost变换器与开关电容的锂电池环形均衡器不仅减少了首尾电池之间能量传输路径,提高了均衡效率,而且额外添加的开关电容均衡模块具有控制简单、体积小、均衡效率高的优点,保证了均衡的快速性以及所公开均衡器的实用性。
技术特征:
1.一种基于buck-boost变换器与开关电容的锂电池环形均衡器,其特征在于,包含n-1个buck-boost变换器均衡模块,1个开关电容均衡模块,被均衡的锂电池组含有n个锂电池单元(b1、b2、b3、
……
、b
n
),第i(i=1,2
……
,(n-1))节锂电池单元的正极与第(i+1)节锂电池单元的负极相连,第1节锂电池单元的负极作为整个电池组的负极,第n节锂电池单元的正极作为整个电池组的正极;每个buck-boost变换器均衡模块由两个开关管和一个电感组成,第i(i=1、2、
…
、(n-1)个buck-boost变换器均衡模块中的开关管s
2i-1
的漏极与开关管s
2i
的源极共同连接到电感l
i
的第一端,开关管s
2i
的漏极与锂电池单元b
i+1
的正极相连接,电感l
i
的第二端与锂电池单元b
i+1
的负极、锂电池单元b
i
的正极相连接,开关管s
2i-1
的源极与锂电池单元b
i
的负极相连接;开关电容均衡模块由四个开关管和一个电容组成,开关管q1的漏极与开关管q2的源极共同连接到电容的第一端,开关管q1的源极与锂电池单元b1的负极相连接,锂电池单元b
n-1
的正极与b
n
的负极共同连接到开关管q2的漏极,开关管q3的漏极与开关管q4的源极共同连接到电容的第二端,锂电池单元b1的正极与b2的负极共同连接到开关管q3的源极,开关管q4的漏极与锂电池单元b
n
的正极相连接。2.一种如权利要求1所述的基于buck-boost变换器与开关电容的锂电池环形均衡器,其特征在于,相邻电池间采用buck-boost变换器均衡模块实现均衡,首尾电池间采用开关电容均衡模块实现均衡,有效减少锂电池组平均均衡路径,提高了均衡速度,提高了均衡效率。
技术总结
本发明公开一种基于Buck-Boost变换器与开关电容的锂电池环形均衡器,包括n-1个Buck-Boost变换器均衡模块,1个开关电容均衡模块,每个Buck-Boost变换器均衡模块包括两个开关管和一个电感,每个开关电容均衡模块包括四个开关管和一个电容,锂电池包含n个锂电池单元。本发明相邻电池间采用Buck-Boost变换器均衡,首尾电池间采用开关电容均衡模块实现均衡,由此实现能量在锂电池组中的双向环式流动,一方面能够有效解决首尾电池单元距离较远,均衡速度慢、均衡效率低的问题,另一方面开关电容均衡模块具有结构简单、成本低、体积小等优点。体积小等优点。体积小等优点。
技术研发人员:
阚加荣 韩欣晟 潘健 王淼 刘俊 王琳 陈如龙 邱旭
受保护的技术使用者:
盐城工学院
技术研发日:
2022.10.14
技术公布日:
2022/12/19