一种室温下具有细小晶粒和高塑性的高硅钢及其制备方法

阅读: 评论:0



1.本发明涉及高硅钢及其制备方法。


背景技术:



2.随着油价的不断走高,燃油车的使用成本逐步增加,与之相比,使用电能作为驱动力的新能源汽车将会越来越受欢迎。而硅钢则是制造新能源汽车中电机的铁芯和转子的重要软磁材料。硅钢的性能指标会直接影响到电机的运作情况,硅钢在电机中一般以硅钢片的形式存在,但由于硅钢的塑性较差,难以直接加工成形。与此同时硅钢铁损的存在会造成电能损耗,全球每年因硅钢铁损导致的电能损耗约占全球年发电量的2.5%-4.5%。因此提升硅钢的塑性,使其便于加工成形,同时降低铁损,减少电能损耗对硅钢的工程应用具有重要意义。
3.硅钢的性能与si元素的含量有直接关系,随着si元素含量的增加,硅钢的铁损会降低、电阻率提升、磁导率增加使得磁滞损耗下降,当si元素含量达到6.5wt.%时,此时也称高硅钢,高硅钢的磁致伸缩系数趋近于零,磁导率达到最高,磁滞损耗有很大程度的下降,此时具备最优异的磁性能。但随着si元素含量的增加,硅钢的脆性增加,塑性变差,当si元素含量达到6.5wt.%时,高硅钢的微观结构由a2无序相、b2有序相和d03有序相组成,有序相的出现会在体系中产生反相畴界,会阻碍位错的运动,严重恶化高硅钢的室温塑性,导致高硅钢的室温塑性几乎为零,室温下难以直接冷加工成形。所以提升高硅钢的室温塑性,使其便于加工成形,才会推进高硅钢在工业上的大规模应用。


技术实现要素:



4.本发明要解决现有高硅钢室温塑性几乎为零的问题,进而提供一种室温下具有细小晶粒和高塑性的高硅钢及其制备方法。
5.一种室温下具有细小晶粒和高塑性的高硅钢,它按质量百分数由6.4%~6.6%的si、 1.8%~2.6%的cr、11%~12%的ni及余量fe组成。
6.一种室温下具有细小晶粒和高塑性的高硅钢制备方法,它是按以下步骤进行:
7.一、按质量百分数为6.4%~6.6%的si、1.8%~2.6%的cr、11%~12%的ni及余量fe 称取原料,将原料熔炼并铸造,得到铸锭;
8.二、将铸锭依次进行均匀化退火、热锻处理、固溶处理及水冷处理,得到室温下具有细小晶粒和高塑性的高硅钢。
9.本发明的有益效果是:
10.1、与已有高硅钢相比,本发明高硅钢是为了便于在室温下直接成形而设计的,可以直接在室温条件下轧制成薄带。
11.2、与已有高硅钢相比,本发明高硅钢具有细小的微观组织(平均晶粒尺寸15.01μm)。
12.3、本发明高硅钢具有较为优异的室温塑性变形能力,在室温下具有较高的塑性和
强度(室温拉伸伸长率为35.17%,室温抗拉强度为1255.99mpa)。
13.4、本发明高硅钢在室温环境下发生塑性变形至断裂,会发生韧性断裂,因此会提升高硅钢在电机中的服役时间,极大程度的节约了成本。
附图说明
[0014][0015]
图1为实施例一制备的室温下具有细小晶粒和高塑性的高硅钢显微组织照片;
[0016]
图2为实施例一制备的室温下具有细小晶粒和高塑性的高硅钢的电子衍射图片;
[0017]
图3为实施例一制备的室温下具有细小晶粒和高塑性的高硅钢在室温及应变速率为 0.001s-1
的条件下力学性能曲线;
[0018]
图4为实施例一制备的室温下具有细小晶粒和高塑性的高硅钢在室温下拉伸后断口扫描照片。
具体实施方式
[0019]
具体实施方式一:本实施方式一种室温下具有细小晶粒和高塑性的高硅钢,它按质量百分数由6.4%~6.6%si、1.8%~2.6%cr、11%~12%ni及余量fe组成。
[0020]
本具体实施方式高硅钢以纯度为99.99%的fe、si、cr和ni按上述配比进行配料后,采用真空感应熔炼来制备新型高硅钢。在熔炼时为了保证高硅钢铸锭成分均匀,需要将铸锭反复熔炼三次,以保证合金元素分布均匀,减轻偏析。将熔炼后的高硅钢铸锭放置于热处理炉中进行均匀化退火。均匀化退火结束后,对新型高硅钢铸锭进行热锻处理。然后将热锻后的高硅钢圆棒进行固溶处理,目的是为了减少热锻时产生的位错等缺陷,固溶处理后立即进行水冷处理,这样可以抑制d03有序相的出现。此种新型高硅钢具有及其细小的晶粒,并且在室温下具备较强的塑韧性及强度,成形性能十分优异,非常适合用制作电机中的硅钢片,这样会极大地提升电机的使用效率及服役寿命。
[0021]
本实施方式的有益效果是:
[0022]
1、与已有高硅钢相比,本实施方式高硅钢是为了便于在室温下直接成形而设计的,可以直接在室温条件下轧制成薄带。
[0023]
2、与已有高硅钢相比,本实施方式高硅钢具有细小的微观组织(平均晶粒尺寸15.01 μm)。
[0024]
3、本实施方式高硅钢具有较为优异的室温塑性变形能力,在室温下具有较高的塑性和强度(室温拉伸伸长率为35.17%,室温抗拉强度为1255.99mpa)。
[0025]
4、本实施方式高硅钢在室温环境下发生塑性变形至断裂,会发生韧性断裂,因此会提升高硅钢在电机中的服役时间,极大程度的节约了成本。
[0026]
具体实施方式二:本实施方式一种室温下具有细小晶粒和高塑性的高硅钢制备方法,它是按以下步骤进行:
[0027]
一、按质量百分数为6.4%~6.6%的si、1.8%~2.6%的cr、11%~12%的ni及余量fe 称取原料,将原料熔炼并铸造,得到铸锭;
[0028]
二、将铸锭依次进行均匀化退火、热锻处理、固溶处理及水冷处理,得到室温下具有细小晶粒和高塑性的高硅钢。
[0029]
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是:步骤一中所述的原料为fe金属单质、si单质、cr金属单质和ni金属单质,且纯度均为99.99%。其它与具体实施方式一或二相同。
[0030]
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中将原料依次重复熔炼并铸造3次。其它与具体实施方式一至三相同。
[0031]
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一中所述的熔炼具体是按以下步骤进行:采用真空感应熔炼,在真空度不低于10-5
pa及温度为1550℃~1600℃的条件下,先将fe金属单质、cr金属单质和ni金属单质熔炼至液态,然后加入si单质后熔炼10min~12min。其它与具体实施方式一至四相同。
[0032]
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤一中所述的铸造具体是按以下步骤进行:熔炼后浇铸至钢锭模具中,直至冷却。其它与具体实施方式一至五相同。
[0033]
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中所述的均匀化退火具体是按以下步骤进行:在温度为1000℃~1100℃的条件下,均匀化退火11.5h~12.5h,得到均匀化退火后的铸锭。其它与具体实施方式一至六相同。
[0034]
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤二中所述的热锻处理具体是按以下步骤进行:在始锻温度为1050℃~1150℃及终锻温度为 900℃~950℃的条件下,将均匀化退火后的铸锭锻造成直径为28mm~32mm的圆棒。其它与具体实施方式一至七相同。
[0035]
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤二中所述的固溶处理具体是按以下步骤进行:在固溶处理温度为850℃~900℃的条件下,将直径为28mm~32mm的圆棒固溶处理2h~2.5h。其它与具体实施方式一至八相同。
[0036]
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤二中固溶处理后在2s内进行水冷处理。其它与具体实施方式一至九相同。
[0037]
采用以下实施例验证本发明的有益效果:
[0038]
实施例一:
[0039]
一种室温下具有细小晶粒和高塑性的高硅钢,它按质量百分数由6.56%的si、2.51%的cr、11.27%的ni及余量fe组成。
[0040]
上述一种室温下具有细小晶粒和高塑性的高硅钢制备方法,它是按以下步骤进行:
[0041]
一、按质量百分数为6.56%的si、2.51%的cr、11.27%的ni及余量fe称取原料,将原料熔炼并铸造,得到铸锭;
[0042]
二、将铸锭依次进行均匀化退火、热锻处理、固溶处理及水冷处理,得到室温下具有细小晶粒和高塑性的高硅钢。
[0043]
步骤一中所述的原料为fe金属单质、si单质、cr金属单质和ni金属单质,且纯度均为99.99%。
[0044]
步骤一中将原料依次重复熔炼并铸造3次。
[0045]
步骤一中所述的熔炼具体是按以下步骤进行:采用真空感应熔炼,在真空度为10-5
pa 及温度为1550℃的条件下,先将fe金属单质、cr金属单质和ni金属单质熔炼至液态,然
后加入si单质后熔炼10min。
[0046]
步骤一中所述的铸造具体是按以下步骤进行:熔炼后浇铸至钢锭模具中,直至冷却。
[0047]
步骤二中所述的均匀化退火具体是按以下步骤进行:在温度为1050℃的条件下,均匀化退火12h,得到均匀化退火后的铸锭。
[0048]
步骤二中所述的热锻处理具体是按以下步骤进行:在始锻温度为1100℃及终锻温度为900℃的条件下,将均匀化退火后的铸锭锻造成直径为30mm的圆棒。
[0049]
步骤二中所述的固溶处理具体是按以下步骤进行:在固溶处理温度为850℃的条件下,将直径为30mm的圆棒固溶处理2h。
[0050]
步骤二中固溶处理后在2s内进行水冷处理。
[0051]
图1为实施例一制备的室温下具有细小晶粒和高塑性的高硅钢显微组织照片;由图可知,高硅钢的微观组织得到了极大程度的细化,晶粒极其细小,平均晶粒尺寸15.01μm。
[0052]
图2为实施例一制备的室温下具有细小晶粒和高塑性的高硅钢的电子衍射图片;由图可知,高硅钢的选区电子衍射具备超点阵衍射结构,但是图中圆圈中的衍射斑点亮度极低,说明此时b2有序相和d03有序相含量较少,相应的无序相含量增加。
[0053]
图3为实施例一制备的室温下具有细小晶粒和高塑性的高硅钢在室温及应变速率为 0.001s-1
的条件下力学性能曲线;由图可知,实施例一制备的高硅钢室温拉伸伸长率为 35.17%,其室温塑性远高于常用的高硅钢,且室温抗拉强度为1255.99mpa,也超过常用高硅钢,因此可代替常用高硅钢用于电机中的硅钢片。
[0054]
图4为实施例一制备的室温下具有细小晶粒和高塑性的高硅钢在室温下拉伸后断口扫描照片;由图可知,拉伸后的断口扫描中发现有大量的韧窝存在,说明此时高硅钢在室温下的断裂模式为韧性断裂,室温塑性得到了极大的提升。

技术特征:


1.一种室温下具有细小晶粒和高塑性的高硅钢,其特征在于它按质量百分数由6.4%~6.6%的si、1.8%~2.6%的cr、11%~12%的ni及余量fe组成。2.如权利要求1所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于它是按以下步骤进行:一、按质量百分数为6.4%~6.6%的si、1.8%~2.6%的cr、11%~12%的ni及余量fe称取原料,将原料熔炼并铸造,得到铸锭;二、将铸锭依次进行均匀化退火、热锻处理、固溶处理及水冷处理,得到室温下具有细小晶粒和高塑性的高硅钢。3.根据权利要求2所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于步骤一中所述的原料为fe金属单质、si单质、cr金属单质和ni金属单质,且纯度均为99.99%。4.根据权利要求2所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于步骤一中将原料依次重复熔炼并铸造3次。5.根据权利要求4所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于步骤一中所述的熔炼具体是按以下步骤进行:采用真空感应熔炼,在真空度不低于10-5
pa及温度为1550℃~1600℃的条件下,先将fe金属单质、cr金属单质和ni金属单质熔炼至液态,然后加入si单质后熔炼10min~12min。6.根据权利要求4所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于步骤一中所述的铸造具体是按以下步骤进行:熔炼后浇铸至钢锭模具中,直至冷却。7.根据权利要求2所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于步骤二中所述的均匀化退火具体是按以下步骤进行:在温度为1000℃~1100℃的条件下,均匀化退火11.5h~12.5h,得到均匀化退火后的铸锭。8.根据权利要求7所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于步骤二中所述的热锻处理具体是按以下步骤进行:在始锻温度为1050℃~1150℃及终锻温度为900℃~950℃的条件下,将均匀化退火后的铸锭锻造成直径为28mm~32mm的圆棒。9.根据权利要求8所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于步骤二中所述的固溶处理具体是按以下步骤进行:在固溶处理温度为850℃~900℃的条件下,将直径为28mm~32mm的圆棒固溶处理2h~2.5h。10.根据权利要求9所述的一种室温下具有细小晶粒和高塑性的高硅钢制备方法,其特征在于步骤二中固溶处理后在2s内进行水冷处理。

技术总结


一种室温下具有细小晶粒和高塑性的高硅钢及其制备方法,它涉及高硅钢及其制备方法。本发明要解决现有高硅钢室温塑性几乎为零的问题。高硅钢由Si、Cr、Ni及Fe组成;方法:一、称取原料,将原料熔炼并铸造,得到铸锭;二、将铸锭依次进行均匀化退火、热锻处理、固溶处理及水冷处理。本发明用于室温下具有细小晶粒和高塑性的高硅钢及其制备。塑性的高硅钢及其制备。塑性的高硅钢及其制备。


技术研发人员:

江树勇 孙冬 于俊博 王涛 任忠凯 林鹏 边丽萍 闫丙尧 张艳秋

受保护的技术使用者:

哈尔滨工程大学

技术研发日:

2022.09.19

技术公布日:

2022/12/16

本文发布于:2022-12-18 05:34:41,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/2/35610.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:硅钢   室温   塑性   晶粒
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图