1.本发明涉及生物医用材料技术领域,具体而言涉及一种有梯度释药功能的双载药
胶原基
屏障膜及制备方法和应用,为具有较强机械性能、可控生物降解速率、双药梯度释放且具有免疫稳态调节功能的多孔胶原基骨缺损修复屏障膜。
背景技术:
2.随着人们生活水平的不断提高,牙齿种植的需求量正处于高速增长期。牙槽骨是牙种植和口腔功能修复重建的基础,牙槽骨缺损是牙种植面临的巨大挑战。引导性骨组织再生术(guided bone regeneration,gbr)是目前最有效的牙槽骨缺损重建技术,其原理是在软组织与骨缺损区之间放置阻隔软组织细胞的屏障膜,为成骨细胞提供优势生长的三维空间,实现骨缺损的自主性再生。与其他屏障膜相比,胶原膜在骨缺损修复方面具有其独特的优势,目前临床上使用的屏障膜有75%以上是胶原膜。胶原具有抗原性弱、生物相容性好、植入体内无排异反应、与组织亲和力强等独特的生物学活性;而且具有生物可降解性,植入体内后会慢慢降解释放大量的氨基酸,为骨再生提供充足的营养。此外胶原还可刺激诱导成骨细胞的增殖分化,具有引导骨组织再生和防止骨不连的作用。
3.然而,目前使用的胶原膜存在机械强度低、降解速度快以及缺乏抗菌抗炎活性等缺点,无法适应牙周炎以及牙槽骨缺损患处的微环境,从而无法实现最佳的牙槽骨重建效果。研究者们通过交联、添加无机纳米材料或与其他高分子共混等方式来改善胶原膜的机械性能。化学交联常用的交联剂戊二醛可以提高胶原膜机械性能,但在膜降解过程中戊二醛会缓慢释放,引起炎症反应和钙化作用。交联剂1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和六亚甲基二异氰酸酯的细胞毒性相对较低,但会降低胶原膜诱导骨组织再生的能力。研究发现,双醛多糖作为大分子醛类交联剂与蛋白质分子之间会形成复杂的互穿网络结构,克服了小分子醛类交联剂的溶出和细胞毒性问题;双醛多糖交联可以显著提高蛋白材料的机械性能,控制其降解速度和吸水溶胀性;此外,双醛多糖交联不会影响蛋白质分子链上亲水性基团羟基和羧基的数量,双醛多糖分子本身也含有大量的羟基和羧基,不会降低蛋白材料的亲水性和组织贴附能力。
4.牙周炎是造成牙槽骨缺损和成人失牙的主要原因。牙周炎是由牙菌斑微生物感染引起的牙周局部免疫稳态失衡造成的炎症性反应,从组织破坏到组织再生是一个从局部免疫稳态失衡到免疫稳态重塑的过程。理想状态下,屏障膜在发挥软组织阻隔作用的同时,持续缓释具有抗菌及免疫调节效应的药物成分,诱导良好的局部免疫微环境产生,将更有利于牙周组织的快速稳定再生。而目前大部分屏障膜负载的药物采用简单的掺杂方式,会导致药物的突释,不能起到长效抗炎杀菌的功能,同时局部药物浓度过高会产生一定的细胞毒性导致局部菌失调。
5.因此,构建一种具有一定机械强度和生物相容性,且贴合牙槽骨重建周期进行梯度释药维持免疫稳态的胶原基屏障膜具有重要的应用前景。
技术实现要素:
6.本发明针对现有技术的缺陷,提供了一种有梯度释药功能的双载药胶原基屏障膜及制备方法和应用。
7.本发明以胶原为基材,采用双醛多糖作为交联剂,通过胶原氨基与双醛多糖的醛基发生席夫碱交联反应构建多孔胶原基屏障膜。采用纳米
胶束技术将两种具有免疫稳态调节功能的抗菌抗炎药物引入屏障膜中,赋予屏障膜抗菌、抗炎和促进炎症消退的免疫稳态重塑功能,并实现抗菌药物的快速释放以及抗炎药物的长效缓释的梯度释放性能,解决了现有胶原基屏障膜所存在的技术缺陷。
8.为了实现以上发明目的,本发明采取的技术方案如下:
9.(1)载药胶束
溶液的制备:将5~50质量份两亲性聚合物单体和1质量份抗炎药物溶于1~5体积份的有机溶剂制备油相,在0~40℃下超声1~5min使样品充分溶解。将油相加入20体积份的去离子水中,以500~13000rpm的转速高速匀质2~10min获得乳液,将乳液在30~60℃下进行旋转蒸发,直至溶液挥发完全,加入5~20体积份的去离子水复溶,采用0.22~0.80μm的微孔滤膜过滤器对所得溶液进行过滤,最后冷冻干燥获得载抗炎药纳米胶束。将所得的载抗炎药纳米胶束粉末溶于去离子水中得到质量浓度为0.01%~2%的载抗炎药胶束溶液备用。
10.(2)胶原基屏障膜的制备:将胶原溶于0.1~1m的醋酸溶液中得到质量分数为0.1%~2%的胶原溶液,将抗菌药物溶于去离子水中得到质量浓度为0.01%~2%的抗菌药物溶液。将抗菌药物溶液加入胶原溶液中,使抗菌药物的最终质量浓度为0.005%~1%,将载抗炎药胶束溶液加入胶原溶液中,使载抗炎药胶束溶液的最终质量浓度为0.005%~1%,冰浴下搅拌2~24h使其混合均匀。使用0.25~3m的氢氧化钠溶液调节载药胶原溶液ph至5~8。将醛基含量为0.5~5mmol/g的双醛多糖溶于去离子水中,得到质量浓度为0.05%~1%的双醛多糖溶液。在冰浴下将1体积份双醛多糖溶液缓慢加入到10~50体积份的胶原溶液中,然后将混合溶液倒入模具中,在液氮中冷冻30~240s后冷冻干燥得到双载药胶原基屏障膜。
11.作为优选,所述两亲性聚合物为壳聚糖(cs)-聚己内酯(pcl)、聚乙二醇(peg)-聚丙交酯(pla)、peg-胆固醇(chol)、peg-聚乙交酯(pga)、peg-聚(乙交酯-co-丙交酯)(plga)中任意一种或几种的混合物。
12.作为优选,所述有机溶剂为乙醇、甲醇、二氯甲烷、丙酮、乙酸乙酯、甲苯中的任意一种或几种的混合物。
13.作为优选,所述抗炎药物为阿司匹林、对乙酰氨基酚、布洛芬、姜黄素、吲哚美辛中的任意一种。
14.作为优选,所述抗菌药物为ε-聚耐氨酸、米诺环素、氯霉素、醋酸氯己定、四环素、多西环素中的任意一种。
15.作为优选,所述胶原为ⅰ型胶原、ⅱ型胶原、ⅲ型胶原、ⅳ型胶原中的任意一种。
16.作为优选,所述双醛多糖为双醛淀粉、双醛环糊精、双醛羧甲基纤维素、双醛壳聚糖、双醛卡拉胶中的任意一种。
17.本发明获得的产物,作为梯度释药的载药材料。
18.与现有技术相比,本发明的优点在于:
19.(1)本发明以天然高分子为原材料,制备的多孔胶原基骨缺损修复屏障膜具有较高的机械强度、可控的降解速率、良好的生物相容性和组织贴合性;
20.(2)本发明采用双醛多糖作为交联剂避免了小分子醛类交联剂的细胞毒性问题,在不影响胶原本身生物相容性的基础上,提高了胶原基屏障膜的机械性能。
21.(3)本发明采用纳米胶束技术包载抗炎药物,物理共混方式掺入抗菌药物,可以实现抗菌药物快速释放,抗炎药物长效缓释的梯度递送效果,更好地顺应了牙槽骨缺损重建的微环境变化。
附图说明
22.图1(a)为实施例载药胶束的tem图片;
23.图1(b)为实施例载药胶束的tem粒径统计;
24.图1(c)为实施例载药胶束的dls粒径分布统计;
25.图2(a)为实施例多孔胶原膜的sem图片;
26.图2(b)为实施例多孔胶原膜的sem孔径分布统计;
27.图3为实施例纯胶原膜与复合屏障膜对大肠杆菌和金黄葡萄球菌的细菌渗透实验sem图片;
28.图4为实施例抗炎药物与抗菌药物累积释放动力学曲线。
具体实施方式
29.为使本发明的目的、技术方案及优点更加清楚明白,以下列举实施例,对本发明做进一步详细说明。
30.实施例1
31.(1)载药胶束溶液的制备:将10质量份peg-pla单体和1质量份阿司匹林溶于3体积份的丙酮制备油相,在30℃下超声1min使样品充分溶解。将油相加入20体积份的去离子水中,以5000rpm的转速高速匀质4min获得乳液,将乳液在45℃下进行旋转蒸发,直至溶液挥发完全,加入10体积份的去离子水复溶,采用0.45μm的微孔滤膜过滤器对所得溶液进行过滤,最后冷冻干燥获得载阿司匹林纳米胶束。将所得的载阿司匹林纳米胶束粉末溶于去离子水中得到质量浓度为0.5%的载阿司匹林胶束溶液备用。
32.(2)胶原基屏障膜的制备:将ⅰ型胶原溶于0.5m的醋酸溶液中得到质量分数为0.8%的ⅰ型胶原溶液,将米诺环素溶于去离子水中得到质量浓度为0.5%的米诺环素溶液。将米诺环素溶液加入ⅰ型胶原溶液中,使米诺环素的最终质量浓度为0.1%,将载阿司匹林胶束溶液加入ⅰ型胶原溶液中,使载阿司匹林胶束溶液的最终质量浓度为0.1%,冰浴下搅拌12h使其混合均匀。使用0.25m的氢氧化钠溶液调节载药胶原溶液ph至5。将醛基含量为2mmol/g的双醛壳聚糖溶于去离子水中,得到质量浓度为0.3%的双醛壳聚糖溶液。在冰浴下将1体积份双醛壳聚糖溶液缓慢加入到10体积份的ⅰ型胶原溶液中,然后将混合溶液倒入模具中,在液氮中冷冻60s后冷冻干燥得到双载药胶原基屏障膜。
33.实施例2
34.(1)载药胶束溶液的制备:将5质量份peg-chol单体和1质量份布洛芬溶于2体积份的二氯甲烷制备油相,在20℃下超声3min使样品充分溶解。将油相加入20体积份的去离子
水中,以10000rpm的转速高速匀质5min获得乳液,将乳液在35℃下进行旋转蒸发,直至溶液挥发完全,加入10体积份的去离子水复溶,采用0.80μm的微孔滤膜过滤器对所得溶液进行过滤,最后冷冻干燥获得载布洛芬纳米胶束。将所得的载布洛芬纳米胶束粉末溶于去离子水中得到质量浓度为1%的载布洛芬胶束溶液备用。
35.(2)胶原基屏障膜的制备:将ⅱ型胶原溶于0.1m的醋酸溶液中得到质量分数为0.5%的ⅱ型胶原溶液,将四环素溶于去离子水中得到质量浓度为1%的四环素溶液。将四环素溶液加入ⅱ型胶原溶液中,使四环素的最终质量浓度为0.05%,将载布洛芬胶束溶液加入ⅱ型胶原溶液中,使载布洛芬胶束溶液的最终质量浓度为0.05%,冰浴下搅拌8h使其混合均匀。使用1m的氢氧化钠溶液调节载药胶原溶液ph至6。将醛基含量为4mmol/g的双醛环糊精溶于去离子水中,得到质量浓度为0.5%的双醛环糊精溶液。在冰浴下将1体积份双醛环糊精溶液缓慢加入到50体积份的ⅱ型胶原溶液中,然后将混合溶液倒入模具中,在液氮中冷冻100s后冷冻干燥得到双载药胶原基屏障膜。
36.实施例3
37.(1)载药胶束溶液的制备:将20质量份peg-pga单体和1质量份姜黄素溶于5体积份的甲醇制备油相,在0℃下超声5min使样品充分溶解。将油相加入20体积份的去离子水中,以8000rpm的转速高速匀质5min获得乳液,将乳液在45℃下进行旋转蒸发,直至溶液挥发完全,加入10体积份的去离子水复溶,采用0.22μm的微孔滤膜过滤器对所得溶液进行过滤,最后冷冻干燥获得载姜黄素纳米胶束。将所得的载姜黄素纳米胶束粉末溶于去离子水中得到质量浓度为2%的载姜黄素胶束溶液备用。
38.(2)胶原基屏障膜的制备:将ⅲ型胶原溶于0.5m的醋酸溶液中得到质量分数为1%的胶原溶液,将多西环素溶于去离子水中得到质量浓度为2%的多西环素溶液。将多西环素溶液加入ⅲ型胶原溶液中,使多西环素的最终质量浓度为0.04%,将载姜黄素胶束溶液加入ⅲ型胶原溶液中,使载抗炎药胶束溶液的最终质量浓度为0.04%,冰浴下搅拌24h使其混合均匀。使用2m的氢氧化钠溶液调节载药胶原溶液ph至7。将醛基含量为5mmol/g的双醛羧甲基纤维素溶于去离子水中,得到质量浓度为0.5%的双醛羧甲基纤维素溶液。在冰浴下将1体积份双醛羧甲基纤维素溶液缓慢加入到40体积份的ⅲ型胶原溶液中,然后将混合溶液倒入模具中,在液氮中冷冻180s后冷冻干燥得到双载药胶原基屏障膜。
39.本发明提供以下实验数据:
40.如图1(a)到图1(c)所示,所制备的纳米胶束呈近球形,颗粒分布较为均匀且具有良好的分散性,粒径分布在50nm附近,且对抗炎药物成功包载。
41.如图2(a)到图2(b)所示,所示,所制备的屏障膜呈现均匀的多孔,孔径分布在70μm附近,为细胞迁移和增殖提供了空间。
42.如图3所示,与纯胶原膜相比,加入了药物的复合屏障膜,膜表面无活细菌附着,说明该屏障膜可以有效杀死致病菌。
43.如图4所示,a为抗菌药物,可在15d内快速释放90%的药物,b为抗炎药物,可以缓慢释放长达2个月,表明该体系可实现药物的梯度多级释放。
44.本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其
它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。
技术特征:
1.有梯度释药功能的双载药胶原基屏障膜的制备方法,其特征在于,包括以下步骤:采用乳化-薄膜挥发法制备载抗炎药纳米载药胶束,然后将载抗炎药纳米载药胶束溶液与抗菌药物溶液与胶原溶液混合均匀后,以无生物毒性的双醛多糖作为交联剂,通过双醛多糖的醛基与胶原的氨基之间的席夫碱反应进行交联,最后通过液氮冷冻、冷冻干燥得到双载药胶原基屏障膜。2.根据权利要求1所述的一种有梯度释药功能的双载药胶原基屏障膜的制备方法,其特征在于,具体包括如下步骤:(1)载药胶束溶液的制备:将5~50质量份两亲性聚合物单体和1质量份抗炎药物溶于1~5体积份的有机溶剂制备油相,在0~40℃下超声1~5min使样品充分溶解;将油相加入20体积份的去离子水中,以500~13000rpm的转速高速匀质2~10min获得乳液,将乳液在30~60℃下进行旋转蒸发,直至溶液挥发完全,加入5~20体积份的去离子水复溶,采用0.22~0.80μm的微孔滤膜过滤器对所得溶液进行过滤,最后冷冻干燥获得载抗炎药纳米胶束;将所得的载抗炎药纳米胶束粉末溶于去离子水中得到质量浓度为0.01%~2%的载抗炎药胶束溶液备用;(2)胶原基屏障膜的制备:将胶原溶于0.1~1m的醋酸溶液中得到质量分数为0.1%~2%的胶原溶液,将抗菌药物溶于去离子水中得到质量浓度为0.01%~2%的抗菌药物溶液;将抗菌药物溶液加入胶原溶液中,使抗菌药物的最终质量浓度为0.005%~1%,将载抗炎药胶束溶液加入胶原溶液中,使载抗炎药胶束溶液的最终质量浓度为0.005%~1%,冰浴下搅拌2~24h使其混合均匀;使用0.25~3m的氢氧化钠溶液调节载药胶原溶液ph至5~8;将醛基含量为0.5~5mmol/g的双醛多糖溶于去离子水中,得到质量浓度为0.05%~1%的双醛多糖溶液;在冰浴下将1体积份双醛多糖溶液缓慢加入到10~50体积份的胶原溶液中,然后将混合溶液倒入模具中,在液氮中冷冻30~240s后冷冻干燥得到双载药胶原基屏障膜。3.根据权利要求2所述的一种有梯度释药功能的双载药胶原基屏障膜的制备方法,其特征在于:所述两亲性聚合物为壳聚糖(cs)-聚己内酯(pcl)、聚乙二醇(peg)-聚丙交酯(pla)、peg-胆固醇(chol)、peg-聚乙交酯(pga)、peg-聚(乙交酯-co-丙交酯)(plga)中任意一种或几种的混合物。4.根据权利要求2所述的一种有梯度释药功能的双载药胶原基屏障膜的制备方法,其特征在于:所述有机溶剂为乙醇、甲醇、二氯甲烷、丙酮、乙酸乙酯、甲苯中的任意一种或几种的混合物。5.根据权利要求2所述的一种有梯度释药功能的双载药胶原基屏障膜的制备方法,其特征在于:所述抗炎药物为阿司匹林、对乙酰氨基酚、布洛芬、姜黄素、吲哚美辛中的任意一种。6.根据权利要求2所述的一种有梯度释药功能的双载药胶原基屏障膜的制备方法,其特征在于:所述抗菌药物为ε-聚耐氨酸、米诺环素、氯霉素、醋酸氯己定、四环素、多西环素中的任意一种。7.根据权利要求2所述的一种有梯度释药功能的双载药胶原基屏障膜的制备方法,其特征在于:所述胶原为ⅰ型胶原、ⅱ型胶原、ⅲ型胶原、ⅳ型胶原中的任意一种。8.根据权利要求2所述的一种有梯度释药功能的双载药胶原基屏障膜的制备方法,其
特征在于:所述双醛多糖为双醛淀粉、双醛环糊精、双醛羧甲基纤维素、双醛壳聚糖、双醛卡拉胶中的任意一种。9.根据权利要求1到8任一项制备方法所得的一种有梯度释药功能的双载药胶原基屏障膜。10.根据权利要求9所述的一种具有梯度释药功能的双载药胶原基屏障膜的应用,其特征在于,用于载药材料。
技术总结
本发明公开了一种有梯度释药功能的双载药胶原基屏障膜及制备方法和应用,以胶原为基材,采用纳米胶束技术将两种具有免疫稳态调节功能的抗菌抗炎药物引入屏障膜中。采用无生物毒性的双醛多糖作为交联剂,通过胶原氨基与双醛多糖的醛基发生席夫碱交联反应构建多孔胶原基屏障膜。本发明的优点是:双醛多糖交联的胶原基屏障膜,具有较高的机械强度、可控的降解速率、良好的生物相容性和组织贴合性,纳米胶束载药技术赋予屏障膜抗菌、抗炎和促进炎症消退的免疫稳态重塑功能,并实现抗菌药物的快速释放以及抗炎药物的长效缓释的梯度释放性能,解决了现有胶原基屏障膜所存在的技术缺陷。陷。陷。
技术研发人员:
李德富 杨蝶 赵蕾 罗琪 潘一恺 葛黎明 徐志朗 穆畅道
受保护的技术使用者:
四川大学
技术研发日:
2022.09.27
技术公布日:
2022/12/16