1.本发明涉及复合无纺布技术领域,尤其是一种
阻燃化纤吸声无纺布及其生产方法。
背景技术:
2.无纺布又称为不织布,是由定向或随机的纤维而构成,属于新一代环保材料,具有防潮、透气、柔韧、质轻、不助燃、容易分解、无毒无刺激性、价格低廉、可循环再用等优点,呈纤维网结构。制备工艺通常是:将原料经高温熔融-喷丝-铺纲-热压-卷曲等工艺制备而成。
3.目前,随着对无纺布性能需求多样化,制备复合型多功能无纺布成为了本领域技术人员所关注的焦点,并开展了大量研究。例如:专利号为201310044667.7公开了快速吸水气流成网无纺布及其加工方法,该无纺布至少有两层,且在无纺布层之间均敷设有一层
树脂层,无纺布层采用低熔点化学纤维、木纤维和木浆混合制成,具体是将低熔点化学纤维、木浆纤维和木浆通过混合,再经过气流成网器均匀铺洒在输网帘上形成纤维网,让纤维网经撒粉器,将树脂粉撒在纤维网上,再利用远红外射线处理,加热定型,再经过轧压整烫加工以及超声波纵向热封加工,提高了树脂粉表面比,加快了吸水速度;裁切后不漏粉,吸水后侧边不会出现漏水。
4.再例如:专利号为201510809313.1公开了耐高温的汽车轻量化用聚酯无纺布及其制备方法,包括聚酯纤维薄片层和铝箔层,沿着聚酯纤维薄片层厚度方向密度递减形成:紧密层、半紧密层和蓬松层,铝箔层复合于紧密层表面。所得无纺布重量轻、弹性好、阻燃、耐高温隔热、吸音隔音效果好。
5.再例如:专利号为201721773007.2公开了阻燃化纤吸声无纺布,从上到下依次包括阻燃化纤层、加强层以及吸声无纺布层,加强层包括橡胶基体,橡胶基体内设有横、纵排列的抗拉纤维线,阻燃化纤层厚度为0.4-0.8mm,利用阻燃化纤层与阻燃剂
颗粒,提高了吸声、防火阻燃性能,同时增强了抗拉能力。
6.然而,现有技术中出现的各种阻燃化纤吸声无纺布材料的性能依然难以满足实际应用需求,例如:防火阻燃性能与吸声隔音效果的均衡性。
技术实现要素:
7.为了解决现有技术中存在的上述技术问题,本发明提供一种阻燃化纤吸声无纺布及其生产方法。
8.具体是通过以下技术方案得以实现的:
9.本发明创造的目的之一在于提供阻燃化纤吸声无纺布,包括混合纤维层、位于所述混合纤维层上表面和所述混合纤维层下表面上均设有阻燃化纤层,所述阻燃化纤层与所述混合纤维层之间敷设树脂层,所述树脂层内设有若干吸声颗粒,所述吸声颗粒粒径为0.1-0.5mm;所述吸声颗粒是利用磷石膏与新鲜秸秆按照质量比为1:0.01-0.03混合球磨,过4000目筛后,造粒,再送入氮气保护氛围的煅烧炉内,在600-800℃下处理1h而成。
10.经在混合纤维层上表面和下表面上引入阻燃化纤维,极大程度提高了复合无纺布整体阻燃性能,提高了耐高温性能,同时,经在阻燃纤维层与混合纤维层之间引入树脂层,增加比表面积,且在树脂层内铺设吸声颗粒,增强了复合无纺布整体吸声性能,提高了隔音性能;将吸声颗粒采用磷石膏经成型煅烧制备而成,降低了制备成本,且提高了降噪效果。
11.为了能够提高吸声颗粒吸声效果,优选,所述吸声颗粒上有若干微孔。更优选,所述微孔的孔径为0.0001-0.003mm。
12.为了保障吸声颗粒的强度和吸声效果,优选,所述吸声颗粒是利用磷石膏与新鲜秸秆按照质量比为1:0.02混合球磨,过4000目筛后,造粒,再送入氮气保护氛围的煅烧炉内,在700℃下处理1h而成。
13.为了保障能够为造粒过程提供充分的糖度,继而提高粘度,使得造粒成型效果更佳,优选,所述新鲜秸秆为玉米秸秆和/或甘蔗秸秆。
14.优选,所述混合纤维层表面密度为20-25g/
㎡
,且厚度为0.3mm。
15.优选,所述树脂层厚度为0.6-0.8mm。
16.优选,所述阻燃化纤层厚度为0.1-0.2mm。
17.本发明创造的目的之二还提供上述阻燃化纤吸声无纺布生产方法,包括如下步骤:
18.s1:取磷石膏与新鲜秸秆按照质量比为1:0.01-0.03混合球磨,过4000目筛后,造粒,再送入氮气保护氛围的煅烧炉内,在600-800℃下处理1h制备成吸声颗粒;
19.s2:将bet聚酯纤维、芳纶纤维和木浆按照质量比为1:0.3-0.5:1混合,再经气流成网器均匀铺洒在输网帘上,形成纤维网;
20.s3:取树脂升温熔融制备成树脂浆,同时取树脂制备成细度为80目的树脂粉;
21.s4:向纤维网上依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,再采用80℃的热轧辊,在0.1-0.2mpa下轧压,得初布;
22.s5:将初布翻面,再依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,加热定型,再采用80℃的热轧辊,在0.6-0.8mpa下轧压,即得。
23.为了保障初布轧压成型效果较佳,保障整体性能的优异性,优选,所述树脂粉与树脂浆质量比为1:0.2-0.5。
24.与现有技术相比,本发明创造的技术效果体现在:
25.本发明创造结构简单,制作工艺流程易于控制,所采用的原料易得,使得制作成本低,而且所得的阻燃化纤吸声无纺布的耐高温性能较优,且隔音降噪效果较佳,充分利用了树脂层、吸声颗粒相互协同,保障了混合纤维层、阻燃化纤层能够更好的粘附成型,提高了抗剥离强度的同时,增强了隔音降噪、阻燃效果。
26.本发明创造选用熔融而成的树脂浆、研磨而成的树脂粉复合,实现初布成型阶段的工艺简化,保障翻面制备之后,能够实现整体加热成型,再经高压力轧压,提高了树脂层、阻燃化纤层和混合纤维层之间的连接强度。
27.本发明创造利用新鲜秸秆与磷石膏混合研磨过4000目筛,不仅提高了磷石膏和新鲜秸秆之间的接触面积,提高了相互之间混合的均匀性,而且充分保障可造粒成均匀的微细颗粒,同时实现煅烧时在微细颗粒上形成若干微孔,并且,保障了磷石膏粉末粘合的强度,提高了吸声颗粒的强度,避免轧压时造成吸声颗粒大量破碎的现象,增强吸声颗粒铺设
在树脂层内后的降噪效果。
28.本发明创造工艺流程简单,制作成本低廉,更易于产业化推广实施。
附图说明
29.图1为本发明创造工艺流程图。
30.图2为本发明创造阻燃化纤吸声无纺布剖视结构示意图。
31.图3为本发明创造吸声颗粒放大结构示意图。
32.1-混合纤维层2-树脂层3-阻燃化纤层4-吸声颗粒5-微孔。
具体实施方式
33.下面结合附图和具体的实施方式来对本发明的技术方案做进一步的限定,但要求保护的范围不仅局限于所作的描述。
34.如图1和图2所示,在某些实施例中,阻燃化纤吸声无纺布,包括混合纤维层1、位于所述混合纤维层1上表面和所述混合纤维层1下表面上均设有阻燃化纤层3,所述阻燃化纤层3与所述混合纤维层1之间敷设树脂层2,所述树脂层2内设有若干吸声颗粒4,所述吸声颗粒4粒径为0.1-0.5mm,例如:0.1mm,0.2mm,0.3mm,0.4mm,0.5mm等;所述吸声颗粒4是利用磷石膏与新鲜秸秆按照质量比为1:0.01-0.03,例如:1:0.01,1:0.02,1:0.03等比例混合球磨,过4000目筛后,造粒,再送入氮气保护氛围的煅烧炉内,在600-800℃,例如:600℃,700℃,800℃等温度下处理1h而成。
35.采用磷石膏与新鲜秸秆混合研磨、造粒、煅烧制备成吸声颗粒,再将吸声颗粒设置在树脂层内,利用树脂层的成型固化,将吸声颗粒设在阻燃化纤层和混合纤维层之间,且利用特定的成型工艺,使得阻燃化纤层与混合纤维层之间的粘接强度增强,提高了抗剥离能力,同时,增强了阻燃耐高温和吸声降噪效果,实现了阻燃、降噪效果均衡提升,提高了阻燃化纤吸声无纺布整体性能。
36.如图2和图3所示,在某些实施例中,所述吸声颗粒4上有若干微孔5。所述微孔5的孔径为0.0001-0.003mm,例如:0.0001mm,0.001mm,0.003mm等孔径。该孔径只是经过将本发明创造所得的吸声颗粒进行测试而得的平均值,对于孔径位于0.01mm以下,均能够有效保障吸声颗粒强度,同时孔隙率较优。
37.在某些实施例中,所述新鲜秸秆为玉米秸秆和/或甘蔗秸秆,例如:玉米秸秆、甘蔗秸秆或者玉米秸秆与甘蔗秸秆等质量比混合而成的混合秸秆。除了选用上述两种秸秆外,还可以选用糖分相对较高的其他秸秆代替,以便于保障磷石膏与新鲜秸秆混合研磨之后的粘度,继而保障颗粒成型的均匀度,保障造粒-煅烧成型之后的强度和孔隙孔径,使得形成的孔隙孔径维持在0.01mm以下(更优异的实施例中,测得吸声颗粒中孔隙的平均孔径为0.003mm),极大程度保障吸声降噪效果,提高隔音效果。
38.如图1所示,在某些实施例中,所述混合纤维层1表面密度为20-25g/
㎡
,且厚度为0.3mm;例如:所述混合纤维层是bet聚酯纤维、芳纶纤维和木浆按照质量比为1:0.3-0.5:1,例如:1:0.3:1,1:0.4:1,1:0.5:1等比例混合制备而成。
39.如图1所示,在某些实施例中,所述树脂层2厚度为0.6-0.8mm,例如:0.6mm,0.7mm,0.8mm;所述树脂选自但不仅限于聚丙烯树脂、聚乙烯树脂或聚丙烯树脂与聚乙烯树脂等质
量比混合。
40.如图1所示,在某些实施例中,所述阻燃化纤层3厚度为0.1-0.2mm,例如:0.1mm,0.2mm等;所述阻燃化纤层是采用低烟无卤阻燃聚烯烃制备而成。
41.如图1所示,在某些实施例中,上述阻燃化纤吸声无纺布生产方法,包括如下步骤:
42.s1:取磷石膏与新鲜秸秆按照质量比为1:0.01-0.03,例如:1:0.01,1:0.02,1:0.03等比例混合球磨,过4000目筛后,造粒,再送入氮气保护氛围的煅烧炉内,在600-800℃,例如:600℃,700℃,800℃等温度下处理1h制备成吸声颗粒;
43.s2:将bet聚酯纤维、芳纶纤维和木浆按照质量比为1:0.3-0.5:1,例如:1:0.3:1,1:0.4:1,1:0.5:1等比例混合,再经气流成网器均匀铺洒在输网帘上,形成纤维网;
44.s3:取树脂升温熔融制备成树脂浆,同时取树脂制备成细度为80目的树脂粉;
45.s4:向纤维网上依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,再采用80℃的热轧辊,在0.1-0.2mpa下轧压,得初布;
46.s5:将初布翻面,再依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,130℃加热定型,再采用80℃的热轧辊,在0.6-0.8mpa下轧压,即得。所述树脂粉与树脂浆质量比为1:0.2-0.5。
47.采用bet聚酯纤维、芳纶纤维和木浆制备而成的纤维网上依次撒树脂粉、树脂浆,再铺设吸声颗粒,铺洒阻燃化纤,并且经轧压制备初布,再经翻面后,依次撒树脂粉、树脂浆,再铺设吸声颗粒,铺洒阻燃化纤,并经热定型之后,再经热轧压,提高热轧压压力,使得整体成型效果较佳,增强了阻燃化纤层与复合纤维层之间的抗剥离能力,同时提高了隔音降噪效果。
48.为了能够更好的阐明本发明创造的技术效果,本研究者就制备过程中所开展的试验做出以下更为详尽的阐述,以便于本领域技术人员对本发明创造做出准确的理解。
49.试验一、吸声颗粒制备研究
50.实施例1
51.取磷石膏与新鲜玉米秸秆按质量比为1:0.01混合球磨,过4000目筛后,造粒(粒径0.5mm),再送入氮气保护氛围的煅烧炉内,在600℃下处理1h制备成吸声颗粒。
52.实施例2
53.取磷石膏与新鲜玉米秸秆按质量比为1:0.03混合球磨,过4000目筛后,造粒(粒径0.5mm),再送入氮气保护氛围的煅烧炉内,在800℃下处理1h制备成吸声颗粒。
54.实施例3
55.取磷石膏与新鲜甘蔗秸秆按质量比为1:0.02混合球磨,过4000目筛后,造粒(粒径0.5mm),再送入氮气保护氛围的煅烧炉内,在700℃下处理1h制备成吸声颗粒。
56.实施例4
57.取磷石膏与新鲜玉米秸秆按质量比为1:0.04混合球磨,过4000目筛后,造粒(粒径0.5mm),再送入氮气保护氛围的煅烧炉内,在800℃下处理1h制备成吸声颗粒。
58.实施例5
59.取磷石膏与新鲜玉米秸秆按质量比为1:0.005混合球磨,过4000目筛后,造粒(粒径0.5mm),再送入氮气保护氛围的煅烧炉内,在600℃下处理1h制备成吸声颗粒。
60.实施例6
61.在实施例2基础上,其他均同实施例2,直接采用磷石膏经研磨-造粒-煅烧制备成吸声颗粒。
62.将实施例1-实施例5制备所得的吸声颗粒用于检测其孔隙率,并检测孔隙平均孔径,同时取0.5kg吸声颗粒,利用5kg重量的压力锤放置在上面处理2h后,并过1000目筛,测定过筛率,其结果如下表1所示。
63.表1吸声颗粒性能检测
[0064] 实施例1实施例2实施例3实施例4实施例5实施例6孔隙率(%)37.541.240.746.330.427.9平均孔径(mm)0.00150.00300.00310.00210.00170.06过筛率(%)24.321.819.742.539.646.5
[0065]
由表1可知,采用磷石膏与新鲜秸秆的合理配比,经球磨-过筛-造粒-煅烧工艺处理之后,将有助于提升吸声颗粒的强度,避免挤压而产生大量的碎末,同时还能够改善其孔隙率。
[0066]
试验二、阻燃化纤吸声无纺布工艺研究
[0067]
实施例7
[0068]
取聚丙烯树脂升温熔融制备成树脂浆,同时取聚丙烯树脂制备成细度为80目的树脂粉;将bet聚酯纤维、芳纶纤维和木浆按照质量比为1:0.3:1混合,再经气流成网器均匀铺洒在输网帘上,形成纤维网,纤维网表面密度介于20-25g/
㎡
之间,且厚度为0.3mm;向纤维网上依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,再采用80℃的热轧辊,在0.1mpa下轧压,得初布;将初布翻面,再依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,130℃加热定型,再采用80℃的热轧辊,在0.8mpa下轧压,即得。所述树脂粉与树脂浆质量比为1:0.2。所述树脂层厚度为0.6mm。所述阻燃化纤层厚度为0.1mm。所述吸声颗粒为实施例2制备所得。
[0069]
实施例8
[0070]
取聚乙烯树脂升温熔融制备成树脂浆,同时取聚乙烯树脂制备成细度为80目的树脂粉;将bet聚酯纤维、芳纶纤维和木浆按照质量比为1:0.5:1混合,再经气流成网器均匀铺洒在输网帘上,形成纤维网,纤维网表面密度介于20-25g/
㎡
之间,且厚度为0.3mm;向纤维网上依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,再采用80℃的热轧辊,在0.2mpa下轧压,得初布;将初布翻面,再依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,130℃加热定型,再采用80℃的热轧辊,在0.6mpa下轧压,即得。所述树脂粉与树脂浆质量比为1:0.5。所述树脂层厚度为0.8mm。所述阻燃化纤层厚度为0.2mm。所述吸声颗粒为实施例2制备所得。
[0071]
实施例9
[0072]
取聚丙烯树脂升温熔融制备成树脂浆,同时取聚乙烯树脂制备成细度为80目的树脂粉;将bet聚酯纤维、芳纶纤维和木浆按照质量比为1:0.4:1混合,再经气流成网器均匀铺洒在输网帘上,形成纤维网,纤维网表面密度介于20-25g/
㎡
之间,且厚度为0.3mm;向纤维网上依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,再采用80℃的热轧辊,在0.1mpa下轧压,得初布;将初布翻面,再依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,130℃加热定型,再采用80℃的热轧辊,在0.7mpa下轧压,即得。所述树脂粉与树
脂浆质量比为1:0.4。所述树脂层厚度为0.7mm。所述阻燃化纤层厚度为0.1mm。所述吸声颗粒为实施例2制备所得。
[0073]
实施例10
[0074]
取聚乙烯树脂升温熔融制备成树脂浆,同时取聚丙烯树脂制备成细度为80目的树脂粉;将bet聚酯纤维、芳纶纤维和木浆按照质量比为1:0.5:1混合,再经气流成网器均匀铺洒在输网帘上,形成纤维网,纤维网表面密度介于20-25g/
㎡
之间,且厚度为0.3mm;向纤维网上依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,再采用80℃的热轧辊,在0.2mpa下轧压,得初布;将初布翻面,再依次撒树脂粉、树脂浆,并铺设吸声颗粒,采用阻燃化纤铺洒,130℃加热定型,再采用80℃的热轧辊,在0.7mpa下轧压,即得。所述树脂粉与树脂浆质量比为1:0.3。所述树脂层厚度为0.8mm。所述阻燃化纤层厚度为0.2mm。所述吸声颗粒为实施例2制备所得。
[0075]
实施例11
[0076]
在实施例7的基础上,所述芳纶纤维采用bet聚酯纤维代替,其他均同实施例7。
[0077]
实施例12
[0078]
在实施例7的基础上,所述bet聚酯纤维采用芳纶纤维代替,其他均同实施例7。
[0079]
实施例13
[0080]
在实施例7的基础上,所述树脂浆采用树脂粉替代,其他均同实施例7。
[0081]
实施例14
[0082]
在实施例7的基础上,所述树脂粉采用树脂浆替代,其他均同实施例7。
[0083]
实施例15
[0084]
在实施例7基础上,翻面后的轧压压力等于翻面前轧压压力,其他均同实施例7。
[0085]
实施例16
[0086]
在实施例7基础上,翻面前的轧压压力与翻面后的轧压压力相互交换,其他均同实施例7。
[0087]
实施例17
[0088]
在实施例7基础上,不铺设吸声颗粒,其他均同实施例7。
[0089]
将实施例7-17所得的阻燃化纤吸声无纺布进行层与层间的剥离试验,并测试能够将阻燃化纤层与混合纤维层相互剥离时的力,剥离力测量方法是:在阻燃化纤吸声无纺布上表面的阻燃化纤层上采用绳子固定后,固定点位共10个,每个点位之间间距为1cm,并将绳子悬挂在天花板上,同时,在阻燃化纤吸声无纺布下表面的阻燃化纤层上采用绳子固定,固定点位与在上表面上固定点位相对,并在位于下表面的绳子上加重(0.5kg/次,每次增加间隔时间15s),直至阻燃化纤层与混合纤维层之间发生被剥离或者重量达到30kg为止,其测试结果如表2所示。
[0090]
同时,对实施例7-17所得的阻燃化纤吸声无纺布进行隔音效果试验,利用阻燃化纤吸声无纺布制作成密封包状,并在包内放置能够产生80db音量的播放器,并于包外测试从包内传递出来的声音音量,继而计算降噪率,其结果如下表2所示。
[0091]
表2阻燃化纤吸声无纺布性能测试
[0092] 剥离力(kg)包外音量约(db)降噪率(%)实施例727.52568.75
实施例827.02865.00实施例928.02963.75实施例1026.52667.50实施例1119.52766.25实施例1223.03062.50实施例1314.52667.50实施例1418.52470.00实施例1510.02568.75实施例1611.52963.75实施例1728.56025.00
[0093]
由表2可知,对于吸声颗粒的加入与否,将会直接影响隔音效果和降噪效果,导致隔音降噪效果较差;同时,对于制备工艺的恰当处理,将会有助于提升阻燃化纤层与混合纤维层之间的粘接强度,增强层与层间的抗剥离强度,改善阻燃化纤吸声无纺布的综合性能。
[0094]
试验三、不同吸声颗粒添加对阻燃化纤吸声无纺布影响研究
[0095]
实施例18
[0096]
按照实施例9的制备工艺,将吸声颗粒采用实施例1制备所得的吸声颗粒制备成阻燃化纤吸声无纺布。
[0097]
实施例19
[0098]
按照实施例9的制备工艺,将吸声颗粒采用实施例3制备所得的吸声颗粒制备成阻燃化纤吸声无纺布。
[0099]
实施例20
[0100]
按照实施例9的制备工艺,将吸声颗粒采用实施例4制备所得的吸声颗粒制备成阻燃化纤吸声无纺布。
[0101]
实施例21
[0102]
按照实施例9的制备工艺,将吸声颗粒采用实施例5制备所得的吸声颗粒制备成阻燃化纤吸声无纺布。
[0103]
实施例22
[0104]
按照实施例9的制备工艺,将吸声颗粒采用实施例6制备所得的吸声颗粒制备成阻燃化纤吸声无纺布。
[0105]
将实施例18-实施例22所得的阻燃化纤吸声无纺布按照试验二的抗剥离强度以及降噪率进行检测,其结果如下表3所示。
[0106]
表3不同吸声颗粒对阻燃化纤吸声无纺布性能影响
[0107] 剥离力(kg)包外音量约(db)降噪率(%)实施例1826.52963.75实施例19nd2173.75实施例2027.03852.50实施例2124.54247.50实施例2225.05926.25
[0108]
备注:nd表示已经添加到重量达到30kg,未见有剥离现象。
[0109]
由表1、表3可知,随着吸声颗粒制备工艺以及新鲜秸秆加入量的变化,其抗压强度、孔隙率、平均孔径等均发生变化,导致吸声颗粒的性能变化,继而造成添加在阻燃化纤吸声无纺布制备工艺中后,对阻燃化纤吸声无纺布的综合性能产生影响。其中,吸声颗粒抗压强度越高,能够有助于避免轧压时出现大量压碎现象,提高吸声颗粒的成型率,进而提高阻燃化纤吸声无纺布的层间抗剥离能力和降噪效率。
[0110]
本发明创造其他未见事宜参照现有技术或者本领域技术人员所熟知的公知常识,常规技术手段加以实现即可。
[0111]
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
技术特征:
1.一种阻燃化纤吸声无纺布,其特征在于,包括混合纤维层(1)、位于所述混合纤维层(1)上表面和所述混合纤维层(1)下表面上均设有阻燃化纤层(3),所述阻燃化纤层(3)与所述混合纤维层(1)之间敷设树脂层(2),所述树脂层(2)内设有若干吸声颗粒(4),所述吸声颗粒(4)粒径为0.1-0.5mm;所述吸声颗粒(4)是利用磷石膏与新鲜秸秆按照质量比为1:0.01-0.03混合球磨,过4000目筛后,造粒,再送入氮气保护氛围的煅烧炉内,在600-800℃下处理1h而成。2.如权利要求1所述的阻燃化纤吸声无纺布,其特征在于,所述吸声颗粒(4)上有若干微孔(5)。3.如权利要求2所述的阻燃化纤吸声无纺布,其特征在于,所述微孔(5)的孔径为0.0001-0.003mm。4.如权利要求1或2所述的阻燃化纤吸声无纺布,其特征在于,所述吸声颗粒(4)是利用磷石膏与新鲜秸秆按照质量比为1:0.02混合球磨,过4000目筛后,造粒,再送入氮气保护氛围的煅烧炉内,在700℃下处理1h而成。5.如权利要求4所述的阻燃化纤吸声无纺布,其特征在于,所述新鲜秸秆为玉米秸秆和/或甘蔗秸秆。6.如权利要求1所述的阻燃化纤吸声无纺布,其特征在于,所述混合纤维层(1)表面密度为20-25g/
㎡
,且厚度为0.3mm。7.如权利要求1所述的阻燃化纤吸声无纺布,其特征在于,所述树脂层(2)厚度为0.6-0.8mm。8.如权利要求1所述的阻燃化纤吸声无纺布,其特征在于,所述阻燃化纤层(3)厚度为0.1-0.2mm。9.如权利要求1-8任一项所述阻燃化纤吸声无纺布生产方法,其特征在于,包括如下步骤:s1:取磷石膏与新鲜秸秆按照质量比为1:0.01-0.03混合球磨,过4000目筛后,造粒,再送入氮气保护氛围的煅烧炉内,在600-800℃下处理1h制备成吸声颗粒(4);s2:将bet聚酯纤维、芳纶纤维和木浆按照质量比为1:0.3-0.5:1混合,再经气流成网器均匀铺洒在输网帘上,形成纤维网;s3:取树脂升温熔融制备成树脂浆,同时取树脂制备成细度为80目的树脂粉;s4:向纤维网上依次撒树脂粉、树脂浆,并铺设吸声颗粒(4),采用阻燃化纤铺洒,再采用80℃的热轧辊,在0.1-0.2mpa下轧压,得初布;s5:将初布翻面,再依次撒树脂粉、树脂浆,并铺设吸声颗粒(4),采用阻燃化纤铺洒,加热定型,再采用80℃的热轧辊,在0.6-0.8mpa下轧压,即得。10.如权利要求9所述阻燃化纤吸声无纺布生产方法,其特征在于,所述树脂粉与树脂浆质量比为1:0.2-0.5。
技术总结
本发明涉及复合无纺布技术领域,尤其是一种阻燃化纤吸声无纺布及其生产方法,经在混合纤维层上表面和下表面上引入阻燃化纤维,极大程度提高了复合无纺布整体阻燃性能,提高了耐高温性能,同时,经在阻燃纤维层与混合纤维层之间引入树脂层,增加比表面积,且在树脂层内铺设吸声颗粒,增强了复合无纺布整体吸声性能,提高了隔音性能;将吸声颗粒采用磷石膏经成型煅烧制备而成,降低了制备成本,且提高了降噪效果。降噪效果。降噪效果。
技术研发人员:
谈丰源 吴晔 谈正杰
受保护的技术使用者:
无锡市鸿庆无纺布有限公司
技术研发日:
2022.10.20
技术公布日:
2022/12/16