可球囊扩张的心脏瓣膜系统以及植入方法与流程

阅读: 评论:0



1.本发明涉及用于植入可扩张的人工心脏瓣膜的系统,特别是人工心脏瓣膜和用于部署心脏瓣膜的成形(shaped)的扩张件。


背景技术:



2.近年来,微创心脏瓣膜置换术已变得非常普遍。这种微创心脏瓣膜替换术通常涉及与具有柔性瓣叶的人工生物瓣膜集成的可自扩张或可球囊扩张的支架,其中支架瓣膜装置部署在天然病变瓣膜上以永久保持瓣膜打开,从而减少切除天然瓣膜的需要。这些装置被设计用于在心导管室中在使用荧光镜引导的局部麻醉下经皮递送,从而避免全身麻醉和心内直视手术。
3.这些可扩张的心脏瓣膜使用球囊或自扩张支架作为锚固件。无论是否有瓣叶,可扩张的瓣膜与周围瓣环之间的接触的均匀性都应该使得不发生瓣周漏(pvl),因此适当的扩张是非常重要的。也许更多的问题是一旦瓣膜扩张到位,瓣叶的接合质量。接合是指各个柔性瓣叶在瓣口聚集以阻塞回流的程度。如果瓣叶不完全相遇(这在柔性瓣膜没有适当扩张的情况下可能发生),可能会发生反流。这些和其他问题使得瓣膜的正确植入非常关键。然而,与心内直视手术不同,植入部位不能直接获取或可见,并且瓣膜必须在间接可视化(例如荧光镜成像)下远程植入导管或插管的末端。
4.可球囊扩张的心脏瓣膜通常需要用透明尼龙制成的圆柱形球囊扩张。膨胀流体由与更粘稠的造影剂混合的盐水组成。混合物的自身粘度增加了膨胀/收缩时间,这是不想要的,因为球囊在使用时阻塞了目标瓣环,并且越来越多的手术在非体外循环或心脏不停跳的情况下进行。
5.此外,pvl仍然是经导管瓣膜植入后的主要问题之一。已经开发出各种设计,但是已经证明不能消除pvl。
6.因此,存在减少成功植入的时间并增加成功植入的机会,同时最小化或消除pvl的植入系统和技术的需求。


技术实现要素:



7.本发明提供了一种用于部署可球囊扩张的人工心脏瓣膜,使得它们呈现其想要的手术形状的的系统和方法。该系统包括人工心脏瓣膜和扩张件,该扩张件适应心脏瓣膜中的非均匀扩张阻力以扩张到其想要的管状或其它形状。
8.根据本发明的人工心脏瓣膜组件提供了支架框架的稍微大于流入(心室)端的流出(主动脉)端。这种设计可以最大化瓣膜地理上的有效瓣口面积(eoa),并且在瓣膜关闭时的心脏舒张期减少丘比特区域附近的停滞血液。这种设计还可以减少由于eoa增加而导致的患者假体不配的风险,并且还可以减少瓣膜相关血栓的形成。
9.为了实现本发明的目的,提供了一种具有心脏瓣膜组件的系统,该心脏瓣膜组件包括具有锚固段和流出段的支架框架,其中锚固段具有远侧瓣环段和位于远侧瓣环段和流
出段之间的支撑段。远侧瓣环段由单个远侧单元格行限定,该单个远侧单元格行具有最远侧环形环,该最远侧环形环具有交替的多个波峰和多个波谷,其中远侧单元格行具有凹形弯曲部。瓣叶组件缝合到锚固段。该系统还包括球囊,心脏瓣膜组件卷曲在球囊上,球囊具有近侧部分和远侧部分、以及位于近侧部分和远侧部分之间的中心瓣膜接触部分。接触部分具有流出部、颈部和在流出部和颈部之间的中心部,并且颈部具有在尺寸和形状上与远侧瓣环段的凹形弯曲部相对应的弯曲区。球囊的流出段接收支架框架的流出段,球囊的接触部分的中心部接收支架框架的支撑段,颈部接收支架框架的瓣环段。
10.根据本发明的扩张件提供了通过独特的球囊设计将支架框架恢复到其初始设计的手术形状的机构。具体地,支架框架以如上所述的想要的几何形状预成型,而球囊也以与支架框架匹配的形状预成型。因此,在心脏瓣膜组件的部署期间,当完全扩张时,支架框架可以恢复到其预成型形状。
11.本发明提供了一种使用本发明的扩张件或球囊部署心脏瓣膜组件的方法。心脏瓣膜组件以如下方式安装在球囊上:球囊的流出段接收支架框架的流出段,球囊的接触部分的中心部接收支架框架的支撑段,颈部接收支架框架的瓣环段。然后将结合的球囊和安装的心脏瓣膜组件递送到主动脉瓣环,并且球囊扩张以使得主动脉瓣环被接收在凹形弯曲部内。
附图说明
12.图1是承载在根据本发明的一个实施例的扩张件上的心脏瓣膜组件的立体图,其中该心脏瓣膜组件以扩张构造示出。
13.图2是图1的组件的侧视图。
14.图3是图1的心脏瓣膜组件的立体图。
15.图4是图3的心脏瓣膜组件的侧视图。
16.图5是图3的心脏瓣膜组件的俯视图。
17.图6是图3的心脏瓣膜组件的支架框架的立体图。
18.图7是图6中的支架框架的侧视图。
19.图8是图6中的支架框架的俯视图。
20.图9是图6中的支架框架的仰视图。
21.图10是示出图6的支架框架的一列单元格的单独的主视图。
22.图11是图10的侧视图。
23.图12是图3的心脏瓣膜组件的瓣叶组件的立体图。
24.图13是图12的瓣叶组件的侧视图。
25.图14是图12的瓣叶组件的俯视图。
26.图15是图12的瓣叶组件的仰视图。
27.图16-19示出了用于递送和部署图3中的心脏瓣膜组件在人的主动脉位置的步骤。
28.图20是图1中的扩张件的立体图。
29.图21是图20中的扩张件的侧视图。
具体实施方式
30.下面的详细描述是目前考虑的实施本发明的最佳模式。该描述不是限制性的,而是仅仅为了说明本发明实施例的一般原理而进行的。本发明的范围由所附权利要求书很好地限定。
31.本发明提供了一种改进的用于部署可球囊扩张的心脏瓣膜、使得其能够呈现其想要的手术形状并更好地配合到患者的主动脉瓣环和局部解剖结构中的系统和方法。与目前的可球囊扩张的各经导管心脏瓣膜(thvs)相比,本发明的设计具有两个优点。首先,瓣环水平以上的瓣膜设计(super-annulus valve design)增加了瓣膜的地理上的(geographic)eoa,并增加了人工生物瓣叶和支架框架之间的空间,以减少停滞的血流。第二,流入端处的独特的支架框架设计提供了与天然主动脉瓣环的更好配合,从而降低了pvl的风险。根据本发明的可扩张的心脏瓣膜组件具有支撑多个内部柔性瓣叶的支架框架,其中多个内部柔性瓣叶提供流体封堵表面。心脏瓣膜组件被设计成从用于递送的压缩状态扩张到确保瓣叶的良好接合的手术形状。
32.本文描述的本发明提供了确保可球囊扩张的人工心脏瓣膜组件的适当部署的技术方案,所述可球囊扩张的人工心脏瓣膜组件具有从一个尺寸塑性形变到更大尺寸的支架框架。支架框架材料的示例包括但不限于不锈钢、elgiloy(主要由钴、铬和镍组成的合金)、钛合金和其它特殊金属。
33.本发明涉及具有非恒定扩张阻力的心脏瓣膜。即,可球囊扩张的人工心脏瓣膜组件具有一端,通常为流入端,其具有更多数量的结构部件,包括针脚。心脏瓣膜组件安装在扩张球囊上,递送至植入部位,球囊膨胀。由于心脏瓣膜组件的轴向结构不均匀性,球囊的扩张将在心脏瓣膜组件的呈现最小扩张阻力的任意部分处引起更大或更早的径向扩张。通常,流入端表现出更大的扩张阻力,导致流出端经历更大和更快的扩张。本发明提供了独特的球囊形状以适应这种结构不均匀性,使得心脏瓣膜组件扩张到其设计的手术形状。支架框架的最终形状可以具有非线性外形以适应瓣环的解剖结构。
34.图1-2示出了根据本发明的系统100,其包括承载在可扩张部件400上的可球囊扩张的人工心脏瓣膜组件110,用于部署在患者体内的瓣环位置处,在本发明中瓣环可以是主动脉瓣环。图3-5示出了示例性的可球囊扩张的人工心脏瓣膜组件110,其具有流入端或远端112和流出端或近端114。心脏瓣膜组件110包括外侧的支撑瓣叶组件300(也可参见图12-15)的支架框架200(也可参见图6-11)。图3-4示出了处于其扩张或手术形状的心脏瓣膜组件110,其中支架框架200大致限定一管体,三个瓣叶306连接到该管体并且延伸到限定于其内的圆柱形空间中以彼此接合。在心脏瓣膜组件110中,三个单独的瓣叶306是瓣叶组件300的一部分,并且每个瓣叶沿着它们的并置线或合缝处(lines of juxtaposition,or commissures)固定到支架框架200和其它两个瓣叶。当然,也可以使用整个人工生物瓣膜,例如猪瓣膜。在此,“瓣叶”是指单独的瓣叶或整个异种瓣膜内的瓣叶。
35.参照图1-11,支架框架200具有锚固段220和流出段230。瓣叶组件300将被固定在锚固段220内。锚固段220具有远侧瓣环段222和支撑段224。整个锚固段220由大致环形主体限定,该大致环形主体具有多个四边形或菱形的单元格202。每个单元格202由在多个连接点或节点212处连接的四个支柱211形成。
36.瓣环段222主要由最远侧的单元格209行限定,所述最远侧的单元格209行具有最
远侧环形环,所述最远侧环形环具有交替的多个波峰210和多个波谷213。所述最远侧的单元格209行具有凹形弯曲部226,其中所述单元格209行的波峰210具有最大直径,而所述单元格209行的波谷213具有最小直径并且是凹形弯曲部226的最内侧的波谷。因此,在波峰210和波谷213之间交替的最远侧的支柱行向内弯曲或折弯,直到它们到达波谷213(其用作弯曲点),然后朝向支撑段224中的支柱向外弯曲或折弯。
37.支撑段224由多行单元格202限定(例如,如7图中所示的四行单元格限定),所述多行单元格202可以具有总体上相同的直径(并且稍微渐缩,如下所述),以便大致呈圆柱形。最远侧单元格202行中的每个单元格与单元格209行中的一个相邻单元格共享共同的支柱。单元格202的尺寸和形状可以在整个支撑段224中大体上相同或一致,其中单元格209大体上大于单元格202。结果,瓣环段222比支撑段224更柔软。
38.支撑段224中的最近侧的单元格202环过渡到流出段230。支撑段224中的最近侧的单元格202行中的每个单元格与流出段230中的单元格203行中的一个相邻单元格共享共同的支柱。流出段230由单排单元格203限定,每个单元格203具有由六个支柱限定的大致六边形形状。流出段230具有最近侧环形环,该最近侧环形环具有交替的多个波峰205和多个波谷206,波峰205和波谷206通过成角度的支柱204彼此连接,波谷206经由直支柱201连接到节点207,节点207连接到与支撑段224中的最近侧的单元格202行中的单元格共享的共同的支柱。
39.单元格203通常大于单元格202,并且也可以大于单元格209。
40.图10-11是示出支架框架200的一列单元格209、202和203的独立视图。如图11中最佳示出的,限定单元格209、202和203的支柱不是直的,而是略微弯曲(即,具有弓形形状),节点212略微弯曲或向内延伸。另外,如图11所示,支架框架200的整体直径可以从支撑段224的远端一直到流出段230的近端逐渐增加,以形成非常小的锥度。支架框架200可沿波峰210环具有其最大直径。
41.单元格203、202和209的形状被提供用于不同的目的。例如,单元格203的六边形形状被提供以使得单元格203具有更大的开口以用于冠状动脉进入,并且使得流出段230允许球囊400可以更灵活地扩张。单元格209被配置为允许瓣环段222更柔软,使得支架框架200的流入端112可以被制成更柔软,从而当球囊400扩张时更容易形成颈部。
42.现在参照图12-15,瓣叶组件300被示为具有三个瓣叶306,尽管也可以提供具有两个或四个瓣叶的瓣叶组件。具有多个裙部307的环形裙边支撑各瓣叶306。在该实施例中,为每个瓣叶306提供一个裙部307,缝线311将瓣叶306连接到裙部307。缝线308和缝线310将裙部307的相邻边缘彼此连接以形成环形裙边。环形远侧(流入)边缘309由各裙部307限定。每个瓣叶306具有两个接合边缘301,两个接合边缘301与来自其它两个瓣叶306中的每一个的一个接合边缘301接合,并且每个边缘301具有裙端302和相对的接合端,所述相对的接合端在中心接合位置303附近接合。
43.瓣叶306和裙边可由通常用于这种瓣叶组件的任何已知材料制成,包括猪、牛或合成材料。
44.在心脏瓣膜组件110中,形成瓣叶306的柔性材料经由裙部307附接到支架框架200。具体地,裙部307缝缀或缝合到锚固段220,并且裙部307延伸穿过远侧瓣环段222和支撑段224。如图3-4中最佳示出的,瓣叶306从节点207处的最近侧位置延伸,并且朝向支撑段
224的中心向远侧弯曲。裙部307从波峰210向近侧延伸到支撑段224的不同深度。
45.支架框架200和瓣叶306之间的连接结构的主体靠近流入端112定位。每个瓣叶306优选地沿着靠近流出端114的两点之间的弓形线连接,并且该弓形线靠近流入端112(因此需要更多的缝线)和流入端112。结果,心脏瓣膜组件110具有不均匀的扩张外形。更具体地,流入端112比流出端114对从内部扩张的球囊施加大得多的扩张阻力。因此,从心脏瓣膜组件110内扩张的圆柱形球囊在流出端114处比在流入端112处扩张得更快或更远,因为流出端114提供阻力最小的路径。
46.如上所述,本发明提供不同形状的扩张件或球囊以确保想要的人工心脏瓣膜的扩张。如上所述,几乎普遍用来球囊部署可扩张的心脏瓣膜。然而,可以设想的是,可以使用机械扩张件,例如细长指状物或液压操控的扩张件(即,不是球囊)。因此,术语“扩张件”旨在包括球囊和其它变型。
47.在图1-2和图20-21中,球囊400安装在导管上并且包括近侧部分405、中心瓣膜接触部分420和远侧部分406。接触部分420包括流出部430、颈部422和中心部424。近侧部分405从近端407向远侧以逐渐增大的直径锥化直到第一肩部440,第一肩部440在环形过渡线404处过渡到流出部430。流出部430适于接收支架框架200的流出段230,并且可以具有大致恒定的直径。中心部424适于接收支架框架200的支撑段224,并且可以是稍微渐缩的。颈部422适于接收支架框架200的瓣环段222,并且其尺寸和形状被设计成与想要的瓣环段222的尺寸和形状相匹配。颈部422具有弯曲区411,该弯曲区411通常是凹形的并且在尺寸和形状上对应于支架框架200上的凹形弯曲部226。颈部422从弯曲区411径向扩张,直到其在环形过渡线403处到达第二肩部406。第二肩部406过渡到远侧段409,远侧段409沿远侧方向朝向远端408渐缩。球囊400可包括围绕其的多个标记带(未示出),以促进心脏瓣膜组件110与球囊400的配准。
48.值得注意的是,就球囊而言,术语“近端和远端”取决于心脏瓣膜递送到瓣环中的方向,因为与通过左心室顶点进入的手术相比,在从股动脉开始的心脏瓣膜置换手术中,心脏瓣膜前端将反转,因此导管上的球囊定向也将反转。
49.上述心脏瓣膜组件110在其扩张状态围绕收缩的球囊400定位。标记带(未示出)在本领域中是公知的,并且可用于将心脏瓣膜组件110轴向地定位在球囊400上以用于适当膨胀。由于球囊400的非均匀扩张外形,心脏瓣膜组件110的轴向位置对于确保球囊400的能够施加最大初始径向向外力的部分与心脏瓣膜组件110的较硬区域对准是最重要的。特别地,心脏瓣膜组件110定位在球囊400上,使得其流入端112定位在颈部422上,并且其流出端114定位在流出部430上。随后,心脏瓣膜组件110围绕球囊400卷曲,以便准备好递送到人体内并前进到目标植入部位。当球囊400膨胀时,颈部422最初比流出部430扩张得更快,并最终扩张得更远,从而补偿心脏瓣膜组件110扩张及其流入端112的增加阻力。通过仔细计算心脏瓣膜组件110扩张的非均匀阻力,可以选择球囊400,使得心脏瓣膜组件110扩张到其大直径和适当的手术形状(通常为圆柱体或浅截头圆锥形)。
50.如本领域技术人员可以理解的,本文所述的扩张件/球囊的具体形状将根据瓣膜构造而不同。
51.用于部署人工心脏瓣膜的传统球囊是由透明尼龙制成的。尼龙球囊具有最大扩张直径,这对于避免过度膨胀和破裂非常重要。此外,也可以使用pebax
tm
(嵌段聚醚酰胺)或
pet(聚对苯二甲酸乙二醇酯)等材料。
52.球囊400可单独地根据不同方法中的任何一种或其组合制成。例如,球囊400可使用已知技术预成形为在其扩张状态下的想要的构造和尺寸。又例如,在us5,348,538(其引入本文作为参考)中,描述了遵循阶梯状顺应性曲线的单层球囊。球囊的阶梯状顺应性曲线提供较低压力段和较高压力区,在较低压力段中,球囊快速扩张而产生非弹性,在较高压力区中,球囊沿着大致线性的低顺应性曲线扩张。
53.制造球囊400的另一种方法包括沿着球囊的外表面提供多个限制构件,所述多个限制构件用于限制球囊在这些限制构件的位置处的扩张。
54.还有另一套方法涉及改变球囊材料的刚度或厚度。例如,具有不同刚度的不同材料可用于增强球囊400的选定部分处的直径。例如pet、尼龙、pebax
tm
或其他聚合物等材料具有可适应或可选择的刚度范围。在一些实施例中,球囊400可具有壁材料,该壁材料在流入端112下方相对硬,在流出端114下方相对软。或者,选定部分的壁的厚度可以减小,以允许其扩张到更大的直径。另一种方法是将球囊400扩张成具有想要的端部形状的热模(heated die)。另一种方法是在球囊表面的合适位置施加涂层或附加层,如柔性针织套筒。
55.此外,球囊400可以掺杂有不透射线的材料。掺杂通常在球囊挤出之前进行,以确保掺杂剂的均匀分布。由于球囊本身是不透射线的,因此可以使用盐水使其膨胀而无需添加粘性造影剂。由于盐水的粘度较低,膨胀/收缩时间大大减少。
56.在典型的手术顺序中,可以将心脏瓣膜组件110包装在与球囊400分开的无菌容器中,或者如果使用干燥组织技术来处理瓣叶,则可以将心脏瓣膜组件110预卷曲(pre-crimped)在递送导管的球囊400上。在手术室中,心脏瓣膜组件110和球囊400结合用于植入。该过程需要将处于扩张状态的瓣膜围绕球囊仔细定位,并将瓣膜卷曲到球囊上至预定最大直径。因此,上述标记带极大地便于将瓣膜定位在球囊上以确保适当扩张的步骤。
57.然后将组合的心脏瓣膜组件110和球囊400的组合插入人体内并推进到目标植入部位。图16示出了通过股动脉和升主动脉504的通路。如图16所示,球囊400被承载在递送导管的远端上,并且心脏瓣膜组件110和球囊400的组合被递送到天然主动脉瓣叶503之间的主动脉瓣环502的位置。图17示出球囊400扩张,使得心脏瓣膜组件110也扩张。图18示出了在瓣环502的位置处完全扩张的心脏瓣膜组件110。在该位置,球囊400的颈部422的扩张的远端(其承载支架框架200的瓣环段222)以及远侧段406延伸到左心室501中。然后将球囊400收缩并撤回(见图19)。如图18和19所示,瓣环502被接收在支架框架200的凹形弯曲部226内,从而将心脏瓣膜组件110固定在主动脉瓣环502的位置处。
58.如图18-19中最佳示出的,当瓣叶306关闭时,心脏瓣膜组件110的尺寸和形状被确定为以这样的方式安全地部署在主动脉瓣环502处:减少或最小化pvl并最大化瓣膜地理上的eoa,同时减少心脏舒张期丘比特区域(cupid area)附近的停滞血液。此外,球囊400成形为便于心脏瓣膜组件110的递送、扩张和植入。
59.虽然以上描述涉及本发明的特定实施例,但是应当理解,在不脱离本发明的精神的情况下,可以进行许多修改。所附权利要求旨在覆盖落入本发明的真实范围和精神内的这种修改。

技术特征:


1.一种系统,包括:心脏瓣膜组件,包括:支架框架,所述支架框架包括锚固段和流出段,所述锚固段具有远侧瓣环段和位于所述远侧瓣环段和所述流出段之间的支撑段,其中所述远侧瓣环段由单个远侧单元格行限定,所述远侧单元格行具有最远侧环形环,所述最远侧环形环具有交替的多个波峰和多个波谷,所述远侧单元格行具有凹形弯曲部,其中所述流出段由单个近侧单元格行限定,所述近侧单元格行中的每个单元格具有大致六边形形状,并且具有最近侧环形环,所述最近侧环形环具有交替的多个波峰和多个波谷,以及缝合到所述锚固段的瓣叶组件;以及球囊,所述心脏瓣膜组件卷曲在所述球囊上,所述球囊包括:近侧部分和远侧部分;以及中心瓣膜接触部分,所述接触部分定位在所述近侧部分和远侧部分之间,所述接触部分具有流出部、颈部和在所述流出部和所述颈部之间的中心部,其中所述颈部具有在尺寸和形状上与所述远侧瓣环段的所述凹形弯曲部相对应的弯曲区;且其中所述球囊的所述流出部接收所述支架框架的所述流出段,所述球囊的所述接触部分的所述中心部接收所述支架框架的所述支撑段,并且所述颈部接收所述支架框架的所述瓣环段。2.根据权利要求1所述的系统,其中整个所述支撑段由大致环形主体限定,所述大致环形主体具有多个四边形的单元格。3.根据权利要求2所述的系统,其中所述单个远侧单元格行中的每个单元格是四边形的。4.根据权利要求1所述的系统,其中所述最近侧环形环的所述交替的多个波峰和多个波谷通过多个倾斜的支柱相互连接,并且每个波谷都有一个直支柱从该波谷处延伸至连接到所述支撑段。5.根据权利要求1所述的系统,其中具有交替的多个波峰和多个波谷的所述最远侧环形环限定了具有远侧波峰直径的远侧波峰环和具有远侧波谷直径的远侧波谷环,所述远侧波峰直径具有整个所述支架框架的最大直径,而所述远侧波谷直径具有整个所述支架框架的最小直径。6.根据权利要求1所述的系统,其中所述远侧瓣环段比所述支撑段更柔软。7.根据权利要求1所述的系统,其中所述流出段比所述支撑段更柔软。8.根据权利要求1所述的系统,其中所述流出段比所述远侧瓣环段更柔软。9.根据权利要求1所述的系统,其中所述支撑段具有锥形配置。10.根据权利要求1所述的系统,其中所述球囊有变化的直径,所述变化的直径在所述弯曲区最小。11.根据权利要求1所述的系统,其中所述球囊的所述接触部分具有锥形结构。12.一种用于将人工心脏瓣膜部署在患者心脏的主动脉瓣环处的方法,包括:提供一种系统,所述系统包括:
心脏瓣膜组件,包括:支架框架,所述支架框架包括锚固段和流出段,所述锚固段具有远侧瓣环段和位于所述远侧瓣环段和所述流出段之间的支撑段,其中所述远侧瓣环段由单个远侧单元格行限定,所述远侧单元格行具有最远侧环形环,所述最远侧环形环具有交替的多个波峰和多个波谷,所述远侧单元格行具有凹形弯曲部,其中所述流出段由单个近侧单元格行限定,所述近侧单元格行中的每个单元格具有大致六边形形状,并且具有最近侧环形环,所述最近侧环形环具有交替的多个波峰和多个波谷,以及缝合到所述锚固段的瓣叶组件;以及球囊,所述心脏瓣膜组件卷曲在所述球囊上,所述球囊包括:近侧部分和远侧部分;以及中心瓣膜接触部分,所述接触部分定位在所述近侧部分和远侧部分之间,所述接触部分具有流出部、颈部和在所述流出部和所述颈部之间的中心部,其中所述颈部具有在尺寸和形状上与所述远侧瓣环段的所述凹形弯曲部相对应的弯曲区;以如下方式将所述心脏瓣膜组件安装到所述球囊上:其中所述球囊的所述流出部接收所述支架框架的所述流出段,所述球囊的所述接触部分的所述中心部接收所述支架框架的所述支撑段,并且所述颈部接收所述支架框架的所述瓣环段;将所述球囊和已安装的所述心脏瓣膜组件递送到所述主动脉瓣环;以及扩张所述球囊以使所述主动脉瓣环被接收在所述凹形弯曲部内。

技术总结


一种系统,具有心脏瓣膜组件,该心脏瓣膜组件包括具有锚固段和流出段的支架框架,其中锚固段具有远侧瓣环段和定位在远侧瓣环段和流出段之间的支撑段。远侧瓣环段具有凹形弯曲部。瓣叶组件缝合到锚固段。该系统还包括球囊,心脏瓣膜组件卷曲在球囊上,该球囊具有中心瓣膜接触部分,该中心瓣膜接触部分具有流出部、颈部和在流出部和颈部之间的中心部。球囊的流出部接收支架框架的流出段,球囊的接触部分的中心部接收支架框架的支撑段,颈部接收支架框架的瓣环段。架的瓣环段。架的瓣环段。


技术研发人员:

田斌

受保护的技术使用者:

维他有限责任公司

技术研发日:

2021.05.06

技术公布日:

2022/12/9

本文发布于:2022-12-10 03:04:53,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/2/30146.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:瓣膜   所述   心脏   组件
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图