纤维素是地球上最丰富的生物聚合物,主要分布于植物如树木、棉花等中,它是形成植物细胞壁的主要成分,也是形成许多真菌、藻类细胞壁的主要成分。随着人们对纤维素类产品需求的增加,人们获取纤维素的方法正不断地改进和更新。近年,发现一些细菌也能产生纤维素,其结构、理化特性和生化特性等皆与植物纤维素有较大的差异,与植物纤维相比,细菌纤维素(Bacterial Cellulose,BC)是由超微纤维组成的超微纤维网。不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是自1989 年Yamanaka 等[1]发现BC具有独特的功能后,以微生物作为载体,在分子水平上有高纯度、高结晶度、绿环保的BC成为世界上公认的性能优异的新型生物学材料。本文就BC的结构、性质、研究历史以及在生物医学材料上的应用综述如下。 卧式挤压机1细菌纤维素的结构与特性
1.1细菌纤维素的结构特点:BC是由葡萄糖分子以β-1,4糖苷键聚合而成的一种具有多孔性结构及一定纳米级孔径分布的高分子材料[2]。早在1940 年,人们就用电镜观察到BC由独特的束状纤维组成,这种束状纤维的宽度大约为100 nm,厚度为3~8 nm,每一束由许多微纤维
iomv组成,而微纤维又与其晶状结构相关。术醋杆菌(A.xylinum)是合成BC最强的细菌之一[3],BC的生物合成可分为聚合、分泌、组装、结晶四大过程,这四大过程是高度耦合的,并和细胞膜上的特定位点密切相关。
粉煤灰水泥
1.2 細菌纤维素有许多独特的性质:①mjpg强的持水性和透气性:BC是一种水不溶性的惰性支持物,有很多“孔道”,有良好的透气、透水性能。依据合成条件的不同,它能吸收60~700倍于其干重的水份[2],未经干燥的BC的强持水性能(waterretentionvalues,wRv)值高达1000%以上,冷冻干燥后的持水能力仍超过600%。经100℃干燥后的BC在水中的再溶胀能力与棉短绒相当,即有非凡的持水性,并具有高湿强度[4];②数字光纤直放站高化学纯度和高结晶度:BC是一种“纯纤维素”,以100%纤维素的形式存在,不含半纤维素、木质素、果胶和其他细胞壁成分,结构单一,提纯过程简单;③较高的生物适应性和生物可降解性:Helenius等[5]开展了BC植入小鼠皮下组织的生物适应性研究及Klenm等[6]用BC微管材料取代老鼠颈动脉的研究都表明BC与老鼠身体没有任何排斥反应。在自然环境中,在酸性、微生物以及纤维素酶催化等条件下可最终降解成单糖等小分子物质,不污染环境,是环境的友好产品[7];④高抗张强度和弹性模量:纤维直径在0.01~0.1μm之间,纤维模数为一般纤维的数倍至十倍以上,BC经洗涤、干燥后,杨氏模量可达10MPa,经热压处理后,杨氏模量可达30MPa,
比有机合成纤维的强度高4 倍;⑤BC生物合成时具有可调控性:通过采用不同的培养方法、培养条件,可以得到各种不同性质BC[8],在BC合成过程中及合成后都能对其结构进行修饰,如木醋杆菌能利用葡萄糖与乙酰葡萄胺合成N-乙酰氨基葡萄糖,并以4%的比例将N-乙酰氨基葡萄糖连接在BC上[9];⑥极好的形状维持能力和抗撕力:BC膜的抗撕能力比聚乙烯膜和聚氧乙烯膜要强5倍;⑦抗菌性和防腐性:研究表明质量分数为3%e-PL溶液处理后的BC膜对大肠杆菌和金黄葡萄球菌具有足够的抑菌效果;⑧可利用广泛的基质进行生产。
能量传送器