恒温槽恒温性能的测试

阅读: 评论:0

实验一恒温槽恒温性能的测试
一、实验目的
1.了解恒温槽的构造及恒温原理,掌握恒温操作技术。
2.绘制恒温槽的灵敏度曲线,学会分析恒温槽的性能。
二、实验原理
许多物理化学量都与温度有关,要准确测量其数值,必须在恒温下进行。实验室最常用的是用恒温槽来控制温度维持恒温,它是以某种液体为介质的恒温装置,依靠温度控制器来自动调节其热平衡。tap 完全饲养
图1-1 恒温槽装置图
1-浴槽;2-电热丝;3-搅拌器;4-温度计
5-接触温度计;6-温度控制器
恒温槽一般是由浴槽、搅拌器、加热器、接触温度计、温度控制器和温度计等部分组成,现分别介绍如下:(如图所示)实验开始时,先将搅拌器3启动,将实验目标温度调至所需恒温温度(例如25℃),若此时浴槽1内的水温低于25℃,则接触温度计5的两条引出线断路,则温度控制器6发出指令对加热器2通电加热,使浴槽1内的水温升高,当浴槽1内的水温达到25℃时,接触温度计5的两条引线导通,则温度控制器6发出指令对加热器2停止加热。以后当浴槽1内的水因对外散热使温度低于25℃时,则接触温度计5的两条引线再次断路,则加热器2重新工作。这样周而复始就可使介质的温度在一定范围内保持恒定。
由于这种温度控制装置属于“通”“断”类型,当加热器接通后传热使介质温度上升并传递质温度上升并传递给接触温度计,使它的水银柱上升。由于传质、传热都需要一定时间,因此,会出现温度传递的滞后现象。即当接触温度计的水银触及钨丝时,实际上电热器附近的水温已超过了指定温度,因此,恒温槽温度必高于指定温度。同理,降温时也会出现滞后现象。由此可知,恒温槽控制的温
图1-2 温度控制器的电路图
T-电源变压器;D
1、D
2
、D
3
、D仿呢料
4
-2AP3晶体二级管;J-121型灵敏继电器;
C 1、C
1
-滤波电容;L
1
-
工作指示氖炮;L
2
-电源指示灯炮。抗石击涂料
度有一个波动范围,而不是控制在某一固定不变的温度,并且恒温槽内各处的温度也会因搅拌效果的优劣而不同。控制温度的波动范围越小,各处的温度越均匀,恒温槽的灵敏度越高。灵敏度是衡量恒温槽性能的主要标志,它除与感温元件、电子继电器有关外,还受搅拌器的效率、加热器的功率等因素的影响恒温槽灵敏度的测定是在指定温度下,用较灵敏的温度计,如贝克曼温度计或精密温差测量仪,记录恒温槽温度随时间的变化,若最高温度为t1,最低温度为t
2
,则恒温槽的灵敏度t E为
灵敏度常以温度为纵坐标,以时间为横坐标,绘制成温度 - 时间曲线来表示。
图1-3  灵敏度曲线
在图1-3中曲线(a)表示恒温槽灵敏度较高;(b)表示加热器功率太大;(c)表示加热器功率太小或散热太快。(b)、(c)灵敏度较低。
为了提高恒温槽的灵敏度,在设计恒温槽时要注意以下几点:
1.恒温槽的容量要大些,其热容量越大越好。
2.尽可能加快电热器与接触温度计间传热的速率。为此要使:(1)感温元件的热容尽可能小,感温元件与电热器间距离要近一些;(2)搅拌效率要高。
3.作调节温度用的加热器功率要小些。
三、仪器与试剂
玻璃恒温水浴玻璃缸1个
精密温差测量仪1台
停表 1块
四、实验步骤
1.将蒸馏水注入浴槽至容积的2/3处,将接触温度计、搅拌器、电热器、温度计和精密电子温差测量仪的温度探头等安装好。
2.将恒温槽控制面板上的测量/设定开关打倒设定档,将温度设定为目标温度,如25℃。
3.将恒温槽控制面板上的测量/设定开关打倒测量挡,此时恒温槽的加热器开始工作。吸咪头
4.测定恒温槽的灵敏度。待恒温槽温度恒定在30℃时的10 min后,按精密电子温差测量仪上的置零键置零,然后用手表每隔30秒记录一次贝克曼温度计的读数,测定30min。煤气阀
5.同法测定另一温度(如30℃)下恒温槽的灵敏度和灵敏度曲线。
五、数据记录和处理
1、将实验测定的数据记录于表中:(室温:℃压力:      kPa)
2、以时间为横坐标,以温度为纵坐标,绘制温度-时间曲线;取最高点与最低点温度计算恒温槽的灵敏度t E。
六、讨论
1. 本实验的恒温装置属于常温区的装置,且恒温温度只能高于室温,所以不能用于低于室温的恒温要求,若需在低于室温下恒温则要另外配备其他元件。另外,本实验装置只能通过控温系统使恒温槽的温度升温达到所指定的温度并维持恒定。而不能通过温控系统使高于指定温度的恒温槽中水浴的温度降温达到所指定的温度。遇到这种情况只能通过自然降温的方式或向水浴中添加较低温度的蒸馏水办法来实现。
2. 本实验所使用的恒温槽是自组装的,实验室还经常使用一种由生产厂家组装好的恒温槽,称之为超级恒温槽。其恒温原理与基本构造与自组装的基本相同。不同之处在于超级恒温槽有循环水泵,能使恒温水循环流经待测体系,使待测体系得以恒温。值得注意的是,超级恒温槽中的用水同样应使用蒸馏水,以防对金属槽体的腐蚀破坏。
附实验报告参考格式:
实验一恒温槽恒温性能测试
一、实验目的
通过恒温槽的构造了解恒温原理,掌握恒温调节的技术,并学会贝克曼温度计的使用方法和分析恒温槽的恒温性能。
二、实验原理
恒温槽是以某种液体为介质的恒温装置。依靠恒温控制器来自动调节其热平衡,当恒温槽因对外散热而使介质温度降低时,恒温控制器就使恒温槽内的加热器工作。待加热到设定温度时,它又使加热器停止加热,这样周而复始就可以使液体介质的温度在一定范围内保持恒定。
恒温槽的构造包括浴槽、加热器、搅拌器、温度计、感温元件和恒温控制器。
恒温操作是通过调节感温元件(接触温度计)的“通”“断”实现继电器对加热器控制加热。
恒温槽控制的温度有一个波动范围,而不是控制在某一固定不变的温度,灵敏度是衡量恒温槽恒温性能的标志。
灵敏度为
其中、分别为贝克曼温度计的读数最高值与最低值。灵敏度曲线是以温度为纵坐标,以时间为横坐标,绘制的“温度—时间”曲线。
三、实验操作
1.将蒸馏水注入浴槽至容积的2/3处,将接触温度计、搅拌器、电热器、温度计和精密电子温差测量仪的温度探头等安装好。
2.将恒温槽控制面板上的测量/设定开关打倒设定档,将温度设定为25℃。
3.将恒温槽控制面板上的测量/设定开关打倒测量挡,此时恒温槽的加热器开始工作。
4.测定恒温槽的灵敏度。待恒温槽温度恒定在30℃时的10 min后,按精密电子温差测量仪上的置零键置零,然后用手表每隔2分钟记录一次贝克曼温度计的读数,测定60min。
5.同法将温度设定为30℃测恒温槽的灵敏度和灵敏度曲线。
四、数据记录和处理
1、实验测定的数据记录于表1中:(室温:22.2℃压力:98.5kpa)
2.恒温槽的灵敏度
℃= 0.064℃
以上表中的时间为横坐标,贝克曼温度计读数为纵坐标,绘制恒温槽的灵敏度曲线如下图所示:uicc
五、实验结果与讨论
从上面的灵敏度曲线可能看出,恒温槽的温度是在设定温度(30℃)上下波动,最大波动幅度小于±0.1℃,说明此恒温槽的恒温效果良好;感温元件灵敏;恒温槽的热容量与加热功率搭配合理;搅拌器、接触温度计与加热器之间的距离合适。
应当指出的是,本实验所绘制的灵敏度曲线只是粗略地反映了恒温槽温度的波动情况,因为在2分钟的测量间隔内,可能会发生接触温度计的“通”、“断”情况,这时贝克曼温度计读数将会发生变化。若测量间隔很短,且其他条件(搅拌速率、环境温度等)不变,则灵敏度曲线是很规则的、周期性变化的曲线。
本实验是以水作为恒温介质,控制温度范围0~90℃。对于其它的控制温度范围,应选用别的介质,经查阅文献(吕惠娟等:《物理化学实验》,吉林大学出版社,1999:18)可知,控温范围为-60~30℃,使用乙醇或乙醇水溶液;80~160℃,甘油;70~120℃,液体石蜡或硅油。另外,对于低于室温恒温的控制,应配上循环冷却装置(罗澄源等,物理化学(第二版),高等教育出版社,1991:256)。
通过本实验我们了解到,恒温控制原理在现实生活中的应用比比皆是,如电冰箱、空调、洗浴热水器和电饭褒等。所不同的是,它们所用的感温元件不同。

本文发布于:2023-06-09 00:48:37,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/2/131471.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:热电偶原理
下一篇:感温电缆
标签:温度   温度计   灵敏度
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图