15算出固体精细比表面积。一般情...

阅读: 评论:0

摘要
催化剂在现代化学工业中占有极其重要的地位,是广泛应用于许多重要的化学反应中的催化剂,亦是造成当前环境污染的一部分,因此研究开发出新型环保型催化剂是改善当前环境污染的有效途径之一。SO42-/M x O y型固体超强酸催化剂,因其能在较温和条件下活化酸催化反应,具有制备过程简单、催化活性高、选择性高、副反应少、不腐蚀设备、无“三废”污染、可再生重复使用等优点,迅速成为催化剂领域中的研究热点,并代替传统的酸催化剂广泛应用于有机反应中。
本文采用具有空穴轨道的过渡金属(Fe、Co、Ni)分别对二氧化锡为基体的固体超强酸进行改进研究,合成了系列催化剂,采用FT IR、XRD、TG-DTA、XPS和BET等手段进行了表征;并将合成的催化剂Ni/SO42--SnO2应用于α-蒎烯的水合反应,对水合反应的最佳条件进行考察。通过实验和研究得到以下几方面的结果:(1)制备了催化剂Ni/SO42--SnO2,以乙酸正丁酯合成反应为探针反应,运用正交实验分析得出制备催化剂活性最佳条件:焙烧温度为500 ℃,镍离子浓度为0.5 mol/L,焙烧时间为2 h;其中焙烧温度对催化剂的催化活性影响最大。
(2)采用FT IR、XRD、TG-DTA、XPS等分析手段对Ni/SO42--SnO2固体超强酸的酸中心结构、晶型、含硫量大小、元素形态等物理特征进行表征。结果表明:Ni/SO42--SnO2固体超强酸的酸中心模型为活性组分硫酸根以螯合和桥式两种配位方式和金属结合的,形成了超强酸结构;该结构与镍离子浓度
和焙烧温度有密切关系,引入一定镍离子可以使超强酸结构增强,当达到一定焙烧温度时,该结构随着硫酸根的分解而消失,催化剂表面主要显现出四方晶型的二氧化锡,随着活化温度的提高,晶体结构渐趋完整,镍的加入具有稳定SO42-的作用,使其流失变得较为困难;构成活性组分的S以价态的S(+6)存在。
(3)对Ni/SO42--SnO2的失活机理进行讨论,结果表明用于乙酸正丁酯合成酯化反应的催化剂失活的主要原因是催化剂表面积碳和SO42-流失,可以通过重新浸酸后焙烧得以恢复活性。
(4)将制备的催化剂Ni/SO42--SnO2应用于α-蒎烯水合反应中,以GC-MS对产物进行检测,讨论了影响水合反应的因素,得到了催化α-蒎烯水合反应合成α-松油醇最佳条件为:n(α-蒎烯):n(一):n(H2O)=1:1:2,体系反应温度为70 ℃,反应时间为10 h,催化剂用量为α-蒎烯质量的6%;α-蒎烯转化率达100%,α-松油醇的选择性为73.3%;与未改性的催化剂SO42-/SnO2相比,该催化剂表现出更好的催化活性和选择性。
(5)采用沉淀-浸渍两步法制备了催化剂Co/SO42--SnO2和Fe/SO42--SnO2,将其应用于乙酸正丁酯的合成反应,通过单因素实验对催化剂的制备条件进行考察;并采用FT IR、XRD 和TG-DTA分析技术对催化剂进行表征。
(6)实验表明:Ni2+、Co2+和Fe3+均能够很好的改性SO42-/SnO2催化剂,提高了酯化反应的催化
活性,催化剂催化乙酸正丁酯酯化反应活性由高到低的顺序为:Ni/SO42--SnO2>Fe/SO42--SnO2>Co/SO42--SnO2>SO42-/SnO2。Ni2+改性SO42-/SnO2催化剂的热稳定性比Co2+和Fe3+改性的催化剂的热稳定性要高,金属离子改性催化剂活性组分SO42-含量由大到小的顺序为:Ni/SO42--SnO2>Fe/SO42--SnO2>Co/SO42--SnO2> SO42-/SnO2,与酯化率结果一致。
关键词:固体超强酸;制备;表征;金属离子;水合反应
Abstract
Acidic catalyst which is widely used in many important chemicals, plays an important role in recent chemical industry, however, it can also cause environmental pollution; thus it is an effective way to protect the environment by researching and developing new types of environmental friendly catalysts SO42-/M x O y solid superacids. Because acidic catalyst has the ability to activate acid catalytic reaction under mild conditions, and it possesses the properties of simple preparation, high reactivity, good selectivity, and merits of introducing less side reactions, no corrosion to the reactor, no pollution, easy regeneration and reusability, acidic catalyst has become the hotspot in the field of catalytical science, and it could be applied in organic reactions instead of traditional acidic catalysts.
In this paper, The series of modified solid superacid SO42-/SnO2 were prepared by transition metals
微波功率放大器(Ni, Fe, Co) which possess empty orbits, The acid strength and structure of the solid super acids were characterized by FT IR, XRD, TG-DTA, XPS and BET. Furthermore, the α-terpineol was synthesized by hydration reaction of α-pinene, catalyzed by solid superacid of nickel modified SO42-/SnO2; the influencing factors of the hydration have been discussed. The results obtained from experiments and studies were given as follows:
(1) Using esterification of acetic acid and n-butanol as evaluation method, catalytic activity of these superacids prepared in different conditions such as different calcination temperature, different concentrations of nickel ion and different calcination times have been researched. By orthogonal experiments we have educed the optimum catalytic conditions of Ni/SO42--SnO2: calcination temperature is 500 ℃ concentration of nickel ion is 0.5 mol/L, and calcination time is 2 h. The temperature of calcine is the maximal influencing factor for catalytic activity of catalysts.
(2) The physical property such as acid center, structure of crystal, sulfur content, and elemental form of the materials Ni/SO42--SnO2 were characterized by FT IR, XRD, TG-DTA and XPS. Using the analysis of FT IR spectra, we knew that on the solid surface, sulfuric group was combined to metal via chelation and bridging connection, forming the main catalytic center. The XRD results showed that tetragonal SnO2 appeared on the surface of the samples. When the calcination temperature incr
eased, the crystal of tetragonal SnO2 was perfected gradually. The results of TG-DTA showed that the nickel
modification can enhance catalytic activity more and exhibit better stability than the catalyst without modification. XPS indicated that the maximum Valence of S (+6) on the samples surface, and the first requisite to have strong activity as solid super acids is S (+6).
(3) Deactivation and regeneration of the catalyst were studied. The main reason of deactivation was that the active centers of catalyst covered by adsorbed organic materials and loss of SO42-. The deactivated catalyst could be regenerated by calcining after impregnation.
肉模(4) The α-terpineol was synthesized by hydration reaction of α-pinene, catalyzed by solid superacid of nickel modified SO42-/SnO2. The influencing factors of the hydration have been discussed, furthermore the optimum reaction conditions were that the molar ratio of α-pinene, chloroacetic acid to H2O was 1:1:2, the optimum temperature was 70 ℃, reaction time was 10 h, and the mass fraction of catalyst was 6%(related to the weight of α-pinene). Under this condition, the conversion of α-pinene is over 100%, the selectivity of α-terpineol is 73.3%. The catalyst has high catalytic activity and selectivity. The result showed that it could significantly increase the conversion and selectivity of α-pinene by including nickel to the catalyst SO42-/SnO2.
(5) The catalysts Co/SO42--SnO2 and Fe/SO42--SnO2 were prepared via impregnation and deposition method. Their catalytic activity was testified by esterification of acetic acid and n-butanol, and the best preparation conditions were obtained, the physical properties of catalyst were investigated by FT IR, XRD and TG-DTA.
(6) The experiments showed the catalyst SO42-/SnO2 was well modified by metallic ions, Activity of SO42-/SnO2 catalysts modified by various metallic ions in esterification of acetic acid and n-butanol was in the order of Ni/SO42--SnO2>Fe/SO42--SnO2>Co/SO42-- SnO2>SO42-/SnO2, the results showed Ni/SO42--SnO2 had better thermal stability than Fe/SO42--SnO2 and Co/SO42--SnO2.
Key  words:Solid Superacid;Preparation;Characterization;Metallic ion;Hydration
目录
第一章 绪论 (1)
1.1 课题来源及研究的目的和意义 (1)
1.2 固体超强酸的研究进展 (2)
1.2.1 固体超强酸的定义和分类 (2)
1.2.2 SO
42-/M
x
O
y
型固体超强酸结构的研究 (3)
加热平台edm石墨1.2.3 SO
42-/M
x
O
y
固体超强酸的制备及性能改进 (5)
1.2.4 近代分析技术在催化剂研究中的应用 (11)
1.2.5 SO
42-/M
x
O
y
型固体超强酸在松脂深加工中的应用 (15)
1.2.6 SO
42-/M
x
O
y
型固体超强酸的失活与再生 (17)
1.3 本论文研究的主要内容 (19)
第二章 Ni/SO
42--SnO
2
固体超强酸的制备、表征及在水合反应中的应用 (20)
2.1 前言 (20)
2.2 固体超强酸的制备 (20)
2.2.1 催化剂制备所用药品及仪器 (20)
2.2.2 沉淀-浸渍法制备催化剂实验步骤 (20)
2.2.3 催化剂活性评价 (21)
2.2.4 催化剂N/SS系列制备条件的正交实验分析 (25)
2.2.5 催化剂N/SS系列制备条件的单一因素实验分析 (26)
2.3 固体超强酸的表征 (27)
2.3.1 表征方法 (27)
2.3.2 结果与讨论 (29)
2.4 Ni/SO
42--SnO
2
固体超强酸在松脂水合反应中的应用 (35)
蒸纱锅2.4.1 仪器和试剂 (36)
2.4.2 实验步骤 (36)
2.4.3 分析方法 (37)
2.4.4 结果分析 (37)
2.4.5 水合反应结论 (41)
2.5 催化剂N/SS的失活与再生的研究 (41)
2.5.1 催化剂的失活研究 (42)
插板闸门
2.5.2 催化剂的再生研究 (42)
2.6 本章小结 (43)
第三章 Co/SO
42--SnO
2
、Fe/SO
4
2--SnO
2
固体超强酸的制备和表征 (45)
3.1 前言 (45)
3.2 固体超强酸的制备 (45)
3.2.1 催化剂制备所用药品及仪器 (45)
3.2.2 催化剂制备的实验步骤 (46)
3.2.3 催化剂活性评价 (46)
3.2.4 制备条件对超强酸催化性能的影响 (47)

本文发布于:2023-05-21 13:46:26,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/2/107783.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:催化剂   反应   制备   超强   研究
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图