1.1.2 瞬时速度与导数 学案(含答案)

阅读: 评论:0

1.1.2 瞬时速度与导数 学案(含答案)
1.1.2瞬时速度与导数瞬时速度与导数学习目标自动跟踪
1.理解瞬时速度及瞬时变化率的定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率.3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法.4.理解并掌握开区间内的导数的概念,会求一个函数的导数知识点一瞬时速度与瞬时变化率一质点的运动方程为s83t2,其中s表示位移,t表示时间思考1试求质点在1,1t这段时间内的平均速度答案st831t28312t63t.思考2当t趋近于0时思考1中的平均速度趋近于几怎样理解这一速度答案当t趋近于0时,st趋近于6,这时的平均速度即为t1时的瞬时速度梳理瞬时速度与瞬时变化率1物体运动的瞬时速度设物体运动路程与时间的关系是sft,当t趋近于0时,函数ft在t0到t0t之间的平均变化率ft0tft0t趋近于某个常数,这个常数称为t0时刻的瞬时速度2函数的瞬时变化率设函数yfx在x0及其附近有定义,当自变量在xx0附近改变量为x时,函数值相应地改变yfx0xfx0,如果当x趋近于0时,平均变化率yxfx0xfx0x趋近于一个常数l,则常数l称为函数fx在点x0处的瞬时变化率记作当x0时,fx0xfx0xl.上述过程,通常也记作limx0fx0xfx0xl.知识点二
yfx在点x0处的导数1函数yfx在点x0处的导数定义式fx0limx0fx0xfx0x.2实质函数yfx在点x0处的导数即函数yfx在点x0处的瞬时变化率知识点三
导函数对于函数fxx
22.思考1如何求f1,f0,f12,faaR答案fx0limx0x0x22x202xlimx02x0x2x0,f12,f00,f121,fa2a.思考2若a是一变量,则fa是常量吗答案fa2a,说明fa不是常量,而是关于a的函数梳理导函数的概念1函数可导的定义如果fx在开区间a,b内每一点x都是可导的,则称fx在区间a,b可导2导函数的定义条件fx在区间a,b可导定义对开区间a,b内每个值x,都对应一个确定的导数fx,于是,在区间a,b内fx构成一个新的函数,我们把这个函数称为函数yfx的导函数导函数记法fx或y或yx1瞬时变化率是刻画某函数值在区间x1,x2上变化快慢的物理量2函数yfx在xx0处的导数值与x的正.负无关3函数在一点处的导数fx0是一个常数类型一求瞬时速度例1某物体的运动路程s单位m与时间t单位s的关系可用函数stt2t1表示,求物体在t1s时的瞬时速度解sts1ts1t1t21t11211t3t,limt0stlimt03t3,物体在t1s处的瞬时变化率为3,即物体在t1s时的瞬时速度为3m/s.引申探究1若本例中的条件不变,试求物体的初速度解求物体的初速度,即求物体在t0s时的瞬时速度sts0ts0t0t20t11t1t,limt01t1,物体
玄武岩纤维布在t0s时的瞬时变化率为1,即物体的初速度为1m/s.2若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9m/s.解设物体在t0时刻的瞬时速度为9m/s.又stst0tst0t2t01t,limt0stlimt02t01t2t01,2t019,t04.即物体在4s时的瞬时速度为9m/s.反思与感悟1不能将物体的瞬时速度转化为函数的瞬时变化率是导致无从下手解题的常见错误2求运动物体瞬时速度的三个步骤求时间改变量t和位移改变量sst0tst0求平均速度vst.求瞬时速度vlimt0st.跟踪训练1一质点M按运动方程stat21做直线运动位移单位m,时间单位s,若质点M在t2s时的瞬时速度为8m/s,求常数a的值解质点M在t2s时的瞬时速度即为函数在t2s处的瞬时变化率质点M在t2s附近的平均变化率为sts2ts2ta2t24at4aat,又limt0st4a8,a
军用床2.类型二
求函数在某一点处的导数例21设函数yfx在xx0处可导,且limx0fx03xfx0xa,则fx0________.答案13a解析limx0fx03xfx0xlimx0fx03xfx03x33fx0a,fx013a.2利用导数的定义求函数yfxx在x1处的导数解yf1xf11x1,yx1x1x11x1,f1limx0yxlimx011x11
水性涂料分散剂
2.反思与感悟1求函数yfx在点x0处的导数的三个步骤简称一差,二比,三极限2瞬时变化率的变形形式limx0fx0xfx0xlimx0fx0xfx0xlimx0fx0nxfx0nxlimx0fx0xfx0x2xfx0跟踪训练2已知f
烟气道x3x2,fx06,求x0.解fx0limx0fx0xfx0xlimx03x0x23x20xlimx06x03x6x0,又fx06,6x06,即x01.1设函数fx在点x0附近有定义,且有fx0xfx0axbx2a,b为常数,则AfxaBfxbCfx0aDfx0b答案C解析fx0limx0fx0xfx0xlimx0abxa.2物体运动方程为st3t2位移单位m,时间单位s,若vlimt0s3ts3t18m/s,则下列说法中正确的是A18m/s是物体从开始到3s这段时间内的平均速度B18m/s是物体从3s到3ts这段时间内的速度C18m/s是物体在3s这一时刻的瞬时速度D18m/s是物体从3s到3ts这段时间内的平均速度考点导数的概念题点导数概念的理解答案C3函数yfx2x24x在x3处的导数为________答案16解析f3limx0yxlimx023x243x23243x
16.4一物体的运动方程为stt23t2,则其在t______时的瞬时速度为蝴蝶螺母
1.答案2解析设物体在tt0时的瞬时速度为1,因为stst0tst0tt0t23t0t2t203t02t2t03t,所以limx02t03t2t031,解得t02.5已知物体运动的速度与时间之间的关系是vtt22t2,则在时间间隔1,1t内的平均加速度是________,在t1时的瞬时加速度是________答案4t4解析在1,1t内的平均加速度为vtv1tv1tt4,当t无限趋近于0时,vt无限趋近于
4.利用导数定义求导数三步曲1作差求函数的增量yfx0xfx02作比求平均变化率yxfx0xfx0x.3
取极限得导数fx0limx0yx.简记为一差,二比,三极限

本文发布于:2023-06-14 02:50:21,感谢您对本站的认可!

本文链接:https://patent.en369.cn/patent/1/138560.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   导数   物体   变化率   运动   答案   时间   概念
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 369专利查询检索平台 豫ICP备2021025688号-20 网站地图