无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
内、外置天线比较
目前手机天线主要就内置及外置天线两种,内置天线客观上必然比外置天线弱。天线的架设都是尽量远离地面和建筑物的,天线接近参考地的时候,大部分能量将集中在天线和参考地之间,而无法顺利发射,所以天线发射,需要一个“尽量开放”的空间。而手机电路版就是手机天线的参考地,让天线远离手机其他电路,是提高手机天线发射效率的关键。
但受到实际环境限制以及大家追求携带方便的要求,手机的设计就必须在电气方面做出妥协。实际上,所有的GSM手机的接收发送电路的增益都是是可以根据环境变化而自动调节的,能通过合理的参数设定,会自动补偿有关的损失。所以,就手机整体而言,在信号比较好情况下,内天线和外天线并不能看出差别。
差别是有的,在信号很弱的情况,外天线尤其是长天线的信号死点门限将高于内天线,也就是理论上内天线手机比较容易在弱信号环境丢失信号。
辐射问题,天线效率的下降必须以大的发射功率补偿,相同条件下内天线的辐射会比外天线大。但人体实际受到的辐射和整机结构有关,内天线手机也可以通过合理安排天线位置,抵消辐射对人体的影响。
辐射问题
手机的辐射主要是手机的天线发射模块带来的,手机的天线做得十分粗大,它的作用就是为了减小发射的阻力。
可以说手机天线是手机的辐射源,而把所谓的防磁贴贴在听音器上面也是不行的,因为这样会改变天线周围的磁场,使得天线的信号发生变化,使得通话不能正常进行。
氮化硅结合碳化硅制品天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。
电磁波的极化形式可分为线极化波和圆极化波,线极化波又可分为水平极化和垂直极化波,
圆极化波根据电场旋转方向不同又可分为左旋和右旋圆极化波。我国目前卫星信号方要采用线极化波。 接收天线的极化方式只有同被接收的电磁波极化形式相一致时,才能有效地接收到信号,否则将使接收信号质量变坏,甚至完全收不到信号,这种现象称为极化失配。当馈源采用矩形波导时,其极化方向由波导口的方向确定。波导口窄边与地平面平行为水平极化,宽边与地平面平行为垂直极化。当采用圆波导馈源时,则应以波导中的探针方向为准。值得注意的是:卫星转发器发射的线极化波是以卫星的轴系为基准定义的,因此只有当地面站天线与卫星所处的经度一致时,地面上波的极化方向才与卫星相同,其它地区应略有偏差。因此在安装时应稍微左右转动一下馈源,使接收机的电平指示最大,以达到极化匹配。 天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。
多功能限位器电波在空间传播时,其电场矢量的瞬时取向称为极化。如果电波传播时电场矢量的空间描出轨迹为一直线,它始终在一个平面内传播,则称为线极化波。线极化波又有水平极化波和垂直极化波之分。若电场矢量在空间描出的轨迹为一个圆,即电场矢量是围绕传播方向的轴线不断地旋转,则称为圆极化波。
极化器是控制天馈系统极化方向的装置,用于选择与卫星电视信号一致的极化型式,并抑制其它型式的极化波,以获得极化匹配,实现最佳接收。
馈源是天线的心脏,它用作高增益聚集天线的初级辐射器,为抛物面天线提供有效的照射。
天线的电参数一般都于工作频率有关,保证电参数指标容许的频率变化范围,即是天线的工作频带宽度。一般全向天线的工作带宽能达到工作频率范围的3-5%,定向天线的工作带宽能达到工作频率的防爆钟5-10%。
功率放大器在规定的失真度和额定输出功率条件下的工作频带宽度,即功率放大器的最低工作频率至最高工作频率之间的范围。
频率响应(单位:分贝dB):功率放大器的输出增益随输入信号频率的变化而提升或衰减和相位滞后随输入信号频率而变的现象。这项指标是考核功率放大器品质优劣的最为重要的一项依据,该分贝值越小,说明功率放大器的频率响应曲线越平坦,失真越小,信号的还原度和再现能力越强。
频率载波(Carrier frequency)是指辍线电波发射器中,一种未经调制基本输出波之频率。
线极化与圆极化共存时,极化器的调整 对租用的国际通信卫星发射来的是右旋圆极化波,我国卫星发射的是水平极化波。从收租星改收我国卫星时,就得转动天线馈源中移相介质片,使之与水平面垂直,并调整矩形位置,使其波导输出口的窄边与水平面平行,这时就可以接收水平极化波。 2、只收线极化波时,极化器的调整tt277 当我国不再租用国际通信卫星而使用我国自己发射的卫星时,应把移相器去掉。移相器是接收圆极化的部件,当接收线极化波时,即使使极化片与波导垂直(或水平),不移相也会产生损失,使天线噪声增加。所以在只收线极化波时可把移相极化介质去掉,并使矩形波导窄边平行水平面,以便使电场矢量平行于水平面的水平极化波进入波导。 由于星上发射下来的电波极化方式受地
面站地理位置,卫星姿态等影响,有时可能稍微偏离水平极化,因此调整、安装时要微微左右转动一下馈源,直至接收机的电平指示最大,这时就达到了极化匹配的目的。
进入天线的噪声主要来银河系的宇宙噪声和来自大地、大气的热噪声。不同口径的天线、不同频段、不同仰角和不同环境,天线的噪声都不相同。在C波段,宇宙噪声很小,主要是大地和大气的热噪声。在Ku波段,这些噪声也随着频率而增加。 同一仰角时,天线尺寸越大波束越窄,因此天线的噪声温度TA(K)越小,不 过随着仰角加大,这种差别变小。而同一天线尺寸时,天线仰角Φ越大,天线的噪声温度TA(K)越低,反之Φ越小,第一联动TA越高。这是因为仰角Φ越小,信号穿过大气层厚度越大,从而气象噪声、大气噪声越强。
我们也可用增益来表示天线集中辐射的程度。天线在某一方向的增益定义为:在相同的输入功率下,天线在某一方向某一位置产生的电场强度的平方(E2)与无耗理想点源天线在同一方向同一位置产生的电场强度的平方(E02)的比值,通常以G表示。 G=E2/E02(同一输入功率) 同样,增益也可以这样来确定:在某一方向向某一位置产生相同电场强度的条件下,无耗理想点源天线的输入功率(Pino)与天线的输入功率(Pin)的比值,即称为该天线在该点方向的增益。 G=Pino/Pin(同一电场强度) 通常是以天线在最大辐射方向
的增益作为这一天线的增益。增益通常用分贝表示。即:G=101gPino/Pin天线增益的计算:G=η4πS/λ2=η(π/λ)2D2式中,S-天线口径面积(平方米);λ-工作波长(米);D-抛物面口径(即面口直径)(米);η-天线 效率。
天线品种繁多,主要有下列几种分类方式: 按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas) 按工作频段可划分为超长波、长波、中波、短波、超短波和微波; 按其方向可划分为全向和定向天线;
增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。
直接序列展频技术(Direct Sequence Spread Spectrum; DSSS)是将原来的讯号「1」或「0」,利用10个以上的chips来代表「1」或「0」位,使得原来较高功率、较窄的频率变成具有较宽频的低功率频率。而每个bit使用多少个chips称做Spreading chips,一个较高的Spreading chips可以增加抗噪声干扰,而一个较低Spreading Ration可以增加用户的使用
人数。
天线功率辐射击是否集中,可以用主瓣宽度这一参量来表示;主瓣中辐射功率为最大值一半时两个矢径间的夹角称为主瓣宽度。主瓣宽度越小,方向图越尖锐,表示天线辐射越集中。 副瓣的最大值相对主瓣最大值的比,称为副瓣电平,一般用分贝来表示,其定义为: 101g电蒸汽发生器蒸箱副瓣最大值功率/主瓣最大值功率 如副瓣最大值与主瓣最大值相应功率之比为0.01,则副瓣电平为-20dB。 如果反天线在各方向辐射击的强度用从原点出发的矢量长短来表示,则连接全部矢量端点所形成的包络就是天线的方向图。它显示出天线的在不同方向辐射的相对大小,这种方向图称为立体方向图。矢径的方向代表辐射的方向,矢径的长短代表辐射击的强度。方向图包含有许多波瓣,其中包含最大辐射方向的波瓣称为主瓣。其它依次称为第一副瓣,第二副瓣等。
天线驱动方式有手动、电力和自动三种。前两种均是人工定位,功能简单、造价低;第三种方式在使用双轴跟踪天线时,一般采用单板微机控制,具有自动选择(精度可超过0.3°)、跟踪某一个或预置几个卫星(精度可超过0.1°)等功能,从而使天线能够迅速地到任何一颗需要的卫星,并以信号跟踪方式保证天线处于最佳接收状态。在使用单轴自动跟踪天线时,
一般采用电桥平衡方式自动记忆卫星位置,也可以预置同步轨道上多个卫星,并迅速到任何一颗卫星;但不能以信号跟踪卫星。